Quantum Trajectory Theory
   HOME

TheInfoList



OR:

Quantum Trajectory Theory (QTT) is a formulation of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
used for simulating
open quantum system In physics, an open quantum system is a quantum-mechanical system that interacts with an external quantum system, which is known as the ''environment'' or a ''bath''. In general, these interactions significantly change the dynamics of the system an ...
s,
quantum dissipation Quantum dissipation is the branch of physics that studies the quantum analogues of the process of irreversible loss of energy observed at the classical level. Its main purpose is to derive the laws of classical dissipation from the framework of quan ...
and single quantum systems. It was developed by
Howard Carmichael Howard John Carmichael (born 17 January 1950) is a British-born New Zealand theoretical physicist specialising in quantum optics and the theory of open quantum systems. He is the Dan Walls Professor of Physics at the University of Auckland and a pr ...
in the early 1990s around the same time as the similar formulation, known as the
quantum jump method The quantum jump method, also known as the Monte Carlo method, Monte Carlo wave function (MCWF) is a technique in computational physics used for simulating open quantum systems and quantum dissipation. The quantum jump method was developed by Jean ...
or
Monte Carlo Monte Carlo (; ; french: Monte-Carlo , or colloquially ''Monte-Carl'' ; lij, Munte Carlu ; ) is officially an administrative area of the Principality of Monaco, specifically the ward of Monte Carlo/Spélugues, where the Monte Carlo Casino is ...
wave function (MCWF) method, developed by Dalibard, Castin and Mølmer. Other contemporaneous works on wave-function-based
Monte Carlo Monte Carlo (; ; french: Monte-Carlo , or colloquially ''Monte-Carl'' ; lij, Munte Carlu ; ) is officially an administrative area of the Principality of Monaco, specifically the ward of Monte Carlo/Spélugues, where the Monte Carlo Casino is ...
approaches to open quantum systems include those of Dum, Zoller and Ritsch, and Hegerfeldt and Wilser.The associated primary sources are, respectively: * * * * QTT is compatible with the standard formulation of quantum theory, as described by the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
, but it offers a more detailed view. The Schrödinger equation can be used to compute the probability of finding a quantum system in each of its possible states should a measurement be made. This approach is fundamentally statistical and is useful for predicting average measurements of large ensembles of quantum objects but it does not describe or provide insight into the behaviour of individual particles. QTT fills this gap by offering a way to describe the trajectories of individual quantum particles that obey the probabilities computed from the Schrödinger equation. Like the quantum jump method, QTT applies to open quantum systems that interact with their environment. QTT has become particularly popular since the technology has been developed to efficiently control and monitor individual quantum systems as it can predict how individual quantum objects such as particles will behave when they are observed.


Method

In QTT
open quantum system In physics, an open quantum system is a quantum-mechanical system that interacts with an external quantum system, which is known as the ''environment'' or a ''bath''. In general, these interactions significantly change the dynamics of the system an ...
s are modelled as
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
processes, with classical external fields corresponding to the inputs and classical
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appea ...
es corresponding to the outputs (the fields after the measurement process). The mapping from inputs to outputs is provided by a quantum
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselv ...
process that is set up to account for a particular measurement strategy (e.g.,
photon counting Photon counting is a technique in which individual photons are counted using a single-photon detector (SPD). A single-photon detector emits a pulse of signal for each detected photon, in contrast to a normal photodetector, which generates an analo ...
,
homodyne In electrical engineering, homodyne detection is a method of extracting information encoded as modulation of the phase and/or frequency of an oscillating signal, by comparing that signal with a standard oscillation that would be identical to the ...
/
heterodyne A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called ''heterodyning'', which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is us ...
detection, etc.). The calculated system state as a function of time is known as a quantum trajectory, and the desired
density matrix In quantum mechanics, a density matrix (or density operator) is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using ...
as a function of time may be calculated by averaging over many simulated trajectories. Like other Monte Carlo approaches, QTT provides an advantage over direct master-equation approaches by reducing the number of computations required. For a Hilbert space of dimension N, the traditional master equation approach would require calculation of the evolution of N2 atomic density matrix elements, whereas QTT only requires N calculations. This makes it useful for simulating large open quantum systems. The idea of monitoring outputs and building measurement records is fundamental to QTT. This focus on measurement distinguishes it from the quantum jump method which has no direct connection to monitoring output fields. When applied to direct photon detection the two theories produce equivalent results. Where the quantum jump method predicts the quantum jumps of the system as photons are emitted, QTT predicts the "clicks" of the detector as photons are measured. The only difference is the viewpoint. QTT is also broader in its application than the quantum jump method as it can be applied to many different monitoring strategies including direct photon detection and
heterodyne A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called ''heterodyning'', which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is us ...
detection. Each different monitoring strategy offers a different picture of the system dynamics.


Applications

There have been two distinct phases of applications for QTT. Like the quantum jump method, QTT was first used for computer simulations of large quantum systems. These applications exploit its ability to significantly reduce the size of computations, which was especially necessary in the 1990s when computing power was very limited. The second phase of application has been catalysed by the development of technologies to precisely control and monitor single quantum systems. In this context QTT is being used to predict and guide single quantum system experiments including those contributing to the development of quantum computers. It has also been shown that quantum trajectories have full and universal quantum computational power.


Quantum measurement problem

QTT addresses one aspect of the
measurement problem In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key se ...
in quantum mechanics by providing a detailed description of the intermediate steps through which a quantum state approaches the final, measured state during the so-called "
collapse of the wave function In quantum mechanics, wave function collapse occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an ''observat ...
". It reconciles the concept of a
quantum jump A quantum jump is the abrupt transition of a quantum system (atom, molecule, atomic nucleus) from one quantum state to another, from one energy level to another. When the system absorbs energy, there is a transition to a higher energy level (exc ...
with the smooth evolution described by the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
. The theory suggests that "quantum jumps" are not instantaneous but happen in a coherently driven system as a smooth transition through a series of superposition states. This prediction was tested experimentally in 2019 by a team at
Yale University Yale University is a private research university in New Haven, Connecticut. Established in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and among the most prestigious in the wo ...
led by
Michel Devoret Michel Devoret is a French physicist and F. W. Beinecke Professor of Applied Physics at Yale University. He also holds a position as the Director of the Applied Physics Nanofabrication Lab at Yale. He is known for his pioneering work on macroscopi ...
and Zlatko Minev, in collaboration with Carmichael and others at
Yale University Yale University is a private research university in New Haven, Connecticut. Established in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and among the most prestigious in the wo ...
and the
University of Auckland , mottoeng = By natural ability and hard work , established = 1883; years ago , endowment = NZD $293 million (31 December 2021) , budget = NZD $1.281 billion (31 December 2021) , chancellor = Cecilia Tarrant , vice_chancellor = Dawn F ...
. In their experiment they used a
superconducting Superconductivity is a set of physical properties observed in certain materials where Electrical resistance and conductance, electrical resistance vanishes and magnetic field, magnetic flux fields are expelled from the material. Any material e ...
artificial atom Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the q ...
to observe a quantum jump in detail, confirming that the transition is a continuous process that unfolds over time. They were also able to detect when a quantum jump was about to occur and intervene to reverse it, sending the system back to the state in which it started. This experiment, inspired and guided by QTT, represents a new level of control over quantum systems and has potential applications in correcting errors in quantum computing in the future.


References

{{Reflist


External links


mcsolve
Quantum jump (Monte Carlo) solver from
QuTiP QuTiP, short for the Quantum Toolbox in Python, is an open-source computational physics software library for simulating quantum systems, particularly open quantum systems. QuTiP allows simulation of Hamiltonians with arbitrary time-dependence, ...
for
Python Python may refer to: Snakes * Pythonidae, a family of nonvenomous snakes found in Africa, Asia, and Australia ** ''Python'' (genus), a genus of Pythonidae found in Africa and Asia * Python (mythology), a mythical serpent Computing * Python (pro ...
.
QuantumOptics.jl
the quantum optics toolbox in
Julia Julia is usually a feminine given name. It is a Latinate feminine form of the name Julio and Julius. (For further details on etymology, see the Wiktionary entry "Julius".) The given name ''Julia'' had been in use throughout Late Antiquity (e.g. ...
.
Quantum Optics Toolbox
for
Matlab MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation ...
Quantum mechanics Computational physics Monte Carlo methods