Quantum Eraser
   HOME

TheInfoList



OR:

In
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, the quantum eraser experiment is an interferometer experiment that demonstrates several fundamental aspects of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, including
quantum entanglement Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of ...
and complementarity. The quantum eraser experiment is a variation of Thomas Young's classic
double-slit experiment In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanics ...
. It establishes that when action is taken to determine which of 2 slits a photon has passed through, the photon cannot interfere with itself. When a stream of photons is marked in this way, then the interference fringes characteristic of the Young experiment will not be seen. The experiment also creates situations in which a photon that has been "marked" to reveal through which slit it has passed can later be "unmarked." A photon that has been "unmarked" will interfere with itself and produce the fringes characteristic of Young's experiment.


The experiment


Concept

This experiment involves an apparatus with two main sections. After two entangled photons are created, each is directed into its own section of the apparatus. Anything done to learn the path of the entangled partner of the photon being examined in the double-slit part of the apparatus will influence the second photon, and vice versa. The advantage of manipulating the entangled partners of the photons in the double-slit part of the experimental apparatus is that experimenters can destroy or restore the interference pattern in the latter without changing anything in that part of the apparatus. Experimenters do so by manipulating the entangled photon, and they can do so before or after its partner has passed through the slits and other elements of experimental apparatus between the photon emitter and the detection screen. Under conditions where the double-slit part of the experiment has been set up to prevent the appearance of interference phenomena (because there is definitive "which path" information present), the quantum eraser can be used to effectively erase that information. In doing so, the experimenter restores interference without altering the double-slit part of the experimental apparatus. A variation of this experiment, delayed-choice quantum eraser, allows the decision whether to measure or destroy the "which path" information to be delayed until after the entangled particle partner (the one going through the slits) has either interfered with itself or not. In delayed-choice experiments quantum effects can mimic an influence of future actions on past events. However, the temporal order of measurement actions is not relevant.


Procedure

First, a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
is shot through a specialized nonlinear optical device: a
beta barium borate Barium borate is an inorganic compound, a borate of barium with a chemical formula BaB2O4 or Ba(BO2)2. It is available as a hydrate or dehydrated form, as white powder or colorless crystals. The crystals exist in the high-temperature α phase and ...
(BBO) crystal. This crystal converts the single photon into two entangled photons of lower frequency, a process known as
spontaneous parametric down-conversion Spontaneous parametric down-conversion (also known as SPDC, parametric fluorescence or parametric scattering) is a nonlinear instant optical process that converts one photon of higher energy (namely, a pump photon), into a pair of photons (namely, ...
(SPDC). These entangled photons follow separate paths. One photon goes directly to a polarization-resolving detector, while the second photon passes through the double-slit mask to a second polarization-resolving detector. Both detectors are connected to a
coincidence circuit In physics and electrical engineering, a coincidence circuit or coincidence gate is an electronic device with one output and two (or more) inputs. The output activates only when the circuit receives signals within a time window accepted as ''at the ...
, ensuring that only entangled photon pairs are counted. A
stepper motor A stepper motor, also known as step motor or stepping motor, is a brushless DC electric motor that divides a full rotation into a number of equal steps. The motor's position can be commanded to move and hold at one of these steps without any pos ...
moves the second detector to scan across the target area, producing an intensity map. This configuration yields the familiar interference pattern. Next, a
circular polarizer A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of wel ...
is placed in front of each slit in the double-slit mask, producing clockwise
circular polarization In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to t ...
in light passing through one slit, and counter-clockwise circular polarization in the other slit (see Figure 1). (Which slit corresponds to which polarization depends on the polarization reported by the first detector.) This polarization is measured at the second detector, thus "marking" the photons and destroying the interference pattern (see
Fresnel–Arago laws The Fresnel–Arago laws are three laws which summarise some of the more important properties of interference between light of different states of polarization. Augustin-Jean Fresnel and François Arago, both discovered the laws, which bear their ...
). Finally, a
linear polarizer A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well ...
is introduced in the path of the first photon of the entangled pair, giving this photon a diagonal polarization (see Figure 2). Entanglement ensures a complementary diagonal polarization in its partner, which passes through the double-slit mask. This alters the effect of the circular polarizers: each will produce a mix of clockwise and counter-clockwise polarized light. Thus the second detector can no longer determine which path was taken, and the interference fringes are restored. A double slit with rotating polarizers can also be accounted for by considering the light to be a classical wave. However this experiment uses entangled photons, which are not compatible with classical mechanics.


Other applications

Quantum erasure technology can be used to increase the
resolution Resolution(s) may refer to: Common meanings * Resolution (debate), the statement which is debated in policy debate * Resolution (law), a written motion adopted by a deliberative body * New Year's resolution, a commitment that an individual mak ...
of advanced
microscopes A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisibl ...
.


Common misconception

A common misunderstanding about this experiment is that it may be used to instantaneously communicate information between two detectors. Simple causation, however, precludes foisting "given" information on the observed outcomes. It is important to understand the role of the coincidence detector in this experimental setup. The linear polarizer in the top path is effectively filtering out half the entangled photons, and via the coincidence detector, is filtering out the corresponding photons in the bottom path. The coincidence detector can only function by comparing data from both sensors, making it impossible to use this setup for instant communication. In other words, only a small percentage of the light passing through the BBO crystal is split into entangled pairs. The vast majority of photons passing through the crystal are not split, and must be removed from the final data set as unwanted noise. Since there is no way for the detectors to measure whether or not a photon had been part of an entangled pair, that decision is made by looking at the timing, and filtering out any photons that are not picked up at the same time as their 'twin' at the other detector. Thus, when a pair of entangled photons is created, but one of the two is blocked by a polarizer and lost, the remaining photon will be filtered out of the data set as if it was one of the many non-entangled photons. When viewed this way, it is not surprising that making changes to the upper path can have an impact to measurements taken on the lower path, as the two measurements are being compared and used to filter the data. Note that in the final state of this experimental setup, measurements on the lower path always show a smeared out pattern on the raw data. Seeing an interference pattern is only possible by filtering the data with the coincidence detector and only looking at photons that were 1/2 of an entangled pair.


See also

*
Delayed choice quantum eraser A delayed-choice quantum eraser experiment, first performed by Yoon-Ho Kim, R. Yu, S. P. Kulik, Y. H. Shih and Marlan O. Scully, and reported in early 1998, is an elaboration on the quantum eraser experiment that incorporates concepts considered ...
*
Wheeler's delayed choice experiment Wheeler's delayed-choice experiment describes a family of thought experiments in quantum physics proposed by John Archibald Wheeler, with the most prominent among them appearing in 1978 and 1984. These experiments are attempts to decide whether ...
*
Marlan Scully Marlan Orvil Scully (born August 3, 1939) is an American physicist best known for his work in theoretical quantum optics. He is a professor at Texas A&M University and Princeton University. Additionally, in 2012 he developed a lab at the Baylor ...


References


External links


A more technical analysis of the quantum eraser experimentA ''Scientific American'' article: A Do-It-Yourself Quantum Eraser - note: SciAm online subscribers only
{{DEFAULTSORT:Quantum Eraser Experiment Quantum measurement Physics experiments