Quantum Confinement Effect
   HOME

TheInfoList



OR:

A potential well is the region surrounding a local minimum of
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
. Energy captured in a potential well is unable to convert to another type of energy ( kinetic energy in the case of a
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
potential well) because it is captured in the local minimum of a potential well. Therefore, a body may not proceed to the global minimum of potential energy, as it would naturally tend to do due to entropy.


Overview

Energy may be released from a potential well if sufficient energy is added to the system such that the local maximum is surmounted. In
quantum physics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
, potential energy may escape a potential well without added energy due to the
probabilistic Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
characteristics of
quantum particle In quantum field theory, the energy that a particle has as a result of changes that it causes in its environment defines self-energy \Sigma, and represents the contribution to the particle's energy, or effective mass, due to interactions between ...
s; in these cases a particle may be imagined to tunnel ''through'' the walls of a potential well. The graph of a 2D potential energy function is a potential energy surface that can be imagined as the Earth's surface in a landscape of hills and valleys. Then a potential well would be a valley surrounded on all sides with higher terrain, which thus could be filled with water (e.g., be a lake) without any water flowing away toward another, lower minimum (e.g. sea level). In the case of gravity, the region around a mass is a gravitational potential well, unless the density of the mass is so low that tidal forces from other masses are greater than the gravity of the body itself. A potential hill is the opposite of a potential well, and is the region surrounding a
local maximum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
.


Quantum confinement

Quantum confinement can be observed once the diameter of a material is of the same magnitude as the de Broglie wavelength of the electron wave function. When materials are this small, their electronic and optical properties deviate substantially from those of bulk materials. A particle behaves as if it were free when the confining dimension is large compared to the wavelength of the particle. During this state, the bandgap remains at its original energy due to a continuous energy state. However, as the confining dimension decreases and reaches a certain limit, typically in nanoscale, the energy spectrum becomes discrete. As a result, the bandgap becomes size-dependent. As the size of the particles decreases, the electrons and electron holes come closer, and the energy required to activate them increases, which ultimately results in a blueshift in light emission. Specifically, the effect describes the phenomenon resulting from electrons and electron holes being squeezed into a dimension that approaches a critical
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
measurement, called the
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The ...
Bohr radius. In current application, a
quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having light, optical and electronics, electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanote ...
such as a small sphere confines in three dimensions, a quantum wire confines in two dimensions, and a quantum well confines only in one dimension. These are also known as zero-, one- and two-dimensional potential wells, respectively. In these cases they refer to the number of dimensions in which a confined particle can act as a free carrier. See external links, below, for application examples in biotechnology and solar cell technology.


Quantum mechanics view

The electronic and optical properties of materials are affected by size and shape. Well-established technical achievements including quantum dots were derived from size manipulation and investigation for their theoretical corroboration on quantum confinement effect. The major part of the theory is the behaviour of the
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The ...
resembles that of an atom as its surrounding space shortens. A rather good approximation of an exciton's behaviour is the 3-D model of a particle in a box. The solution of this problem provides a sole mathematical connection between energy states and the dimension of space. Decreasing the volume or the dimensions of the available space, increases the energy of the states. Shown in the diagram is the change in electron energy level and bandgap between nanomaterial and its bulk state. The following equation shows the relationship between energy level and dimension spacing: :\psi_ = \sqrt \sin \left( \frac \right) \sin \left( \frac \right) \sin \left( \frac \right) :E_ = \frac \left \left( \frac \right)^2 + \left( \frac \right)^2 + \left( \frac \right)^2 \right/math> Research results provide an alternative explanation of the shift of properties at nanoscale. In the bulk phase, the surfaces appear to control some of the macroscopically observed properties. However, in
nanoparticles A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
, surface molecules do not obey the expected configuration in space. As a result, surface tension changes tremendously.


Classical mechanics view

The
Young–Laplace equation In physics, the Young–Laplace equation () is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or ...
can give a background on the investigation of the scale of forces applied to the surface molecules: :\begin \Delta P &= \gamma \nabla \cdot \hat n \\ &= 2 \gamma H \\ &= \gamma \left(\frac + \frac\right) \end Under the assumption of spherical shape R_1=R_2=R and resolving the Young–Laplace equation for the new radii R (nm), we estimate the new \Delta P(GPa). The smaller the radii, the greater the pressure is present. The increase in pressure at the nanoscale results in strong forces toward the interior of the particle. Consequently, the molecular structure of the particle appears to be different from the bulk mode, especially at the surface. These abnormalities at the surface are responsible for changes of inter-atomic interactions and bandgap.


See also

* Quantum well *
Finite potential well The finite potential well (also known as the finite square well) is a concept from quantum mechanics. It is an extension of the infinite potential well, in which a particle is confined to a "box", but one which has finite potential "walls". Unlike ...
*
Quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having light, optical and electronics, electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanote ...


References


External links

*
Semiconductor Fundamental

Quantum dots synthesisBiological application
{{DEFAULTSORT:Potential Well Quantum mechanical potentials Classical mechanics