Q-Gaussian Process
   HOME

TheInfoList



OR:

q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from
free probability theory Free probability is a mathematical theory that studies non-commutative random variables. The "freeness" or free independence property is the analogue of the classical notion of independence, and it is connected with free products. This theory was i ...
and corresponding to deformations of the
canonical commutation relations In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, hat x,\hat ...
. For other deformations of Gaussian distributions, see
q-Gaussian distribution The ''q''-Gaussian is a probability distribution arising from the maximization of the Tsallis entropy under appropriate constraints. It is one example of a Tsallis distribution. The ''q''-Gaussian is a generalization of the Gaussian in the sam ...
and
Gaussian q-distribution In mathematical physics and probability and statistics, the Gaussian ''q''-distribution is a family of probability distributions that includes, as limiting cases, the uniform distribution and the normal (Gaussian) distribution. It was introduc ...
.


History

The q-Gaussian process was formally introduced in a paper by Frisch and Bourret under the name of ''parastochastics'', and also later by Greenberg as an example of ''infinite statistics''. It was mathematically established and investigated in papers by Bozejko and Speicher and by Bozejko, Kümmerer, and Speicher in the context of non-commutative probability. It is given as the distribution of sums of creation and annihilation operators in a q-deformed Fock space. The calculation of moments of those operators is given by a q-deformed version of a Wick formula or Isserlis formula. The specification of a special covariance in the underlying Hilbert space leads to the q-Brownian motion, a special non-commutative version of classical Brownian motion.


q-Fock space

In the following q\in 1,1 is fixed. Consider a Hilbert space \mathcal . On the algebraic full Fock space : \mathcal_\text(\mathcal)=\bigoplus_\mathcal^, where \mathcal^0=\mathbb\Omega with a norm one vector \Omega, called ''vacuum'', we define a q-deformed inner product as follows: : \langle h_1\otimes\cdots\otimes h_n,g_1\otimes\cdots\otimes g_m\rangle_q = \delta_\sum_\prod^n_\langle h_r,g_\rangle q^, where i(\sigma)=\#\ is the number of inversions of \sigma\in S_n. The ''q-Fock space'' is then defined as the completion of the algebraic full Fock space with respect to this inner product : \mathcal_q(\mathcal)=\overline^. For -1 < q < 1 the q-inner product is strictly positive. For q=1 and q=-1 it is positive, but has a kernel, which leads in these cases to the symmetric and anti-symmetric Fock spaces, respectively. For h\in\mathcal we define the ''q-creation operator'' a^*(h), given by : a^*(h)\Omega=h,\qquad a^*(h)h_1\otimes\cdots\otimes h_n=h\otimes h_1\otimes\cdots\otimes h_n. Its adjoint (with respect to the q-inner product), the ''q-annihilation operator'' a(h), is given by : a(h)\Omega=0,\qquad a(h)h_1\otimes\cdots\otimes h_n=\sum_^n q^ \langle h,h_r\rangle h_1\otimes \cdots \otimes h_\otimes h_\otimes\cdots \otimes h_n.


q-commutation relations

Those operators satisfy the q-commutation relations :a(f)a^*(g)-q a^*(g)a(f)=\langle f,g\rangle \cdot 1\qquad (f,g\in \mathcal). For q=1 , q=0 , and q=-1 this reduces to the CCR-relations, the Cuntz relations, and the CAR-relations, respectively. With the exception of the case q=1, the operators a^*(f) are bounded.


q-Gaussian elements and definition of multivariate q-Gaussian distribution (q-Gaussian process)

Operators of the form s_q(h)= for h\in\mathcal are called ''q-Gaussian'' (or ''q-semicircular'') elements. On \mathcal_q(\mathcal) we consider the ''vacuum expectation state'' \tau(T)=\langle \Omega,T\Omega \rangle, for T\in\mathcal(\mathcal(\mathcal)). The ''(multivariate) q-Gaussian distribution'' or ''q-Gaussian process'' is defined as the non commutative distribution of a collection of q-Gaussians with respect to the vacuum expectation state. For h_1,\dots,h_p\in\mathcal the joint distribution of s_q(h_1),\dots,s_q(h_p) with respect to \tau can be described in the following way,: for any i\\rightarrow\ we have : \tau\left(s_q(h_)\cdots s_q(h_)\right)=\sum_ q^ \prod_ \langle h_, h_ \rangle, where cr(\pi) denotes the number of crossings of the pair-partition \pi. This is a q-deformed version of the Wick/Isserlis formula.


q-Gaussian distribution in the one-dimensional case

For ''p'' = 1, the q-Gaussian distribution is a probability measure on the interval 2/\sqrt, 2/\sqrt/math>, with analytic formulas for its density. For the special cases q=1 , q=0 , and q=-1 , this reduces to the classical Gaussian distribution, the Wigner semicircle distribution, and the symmetric Bernoulli distribution on \pm 1. The determination of the density follows from old results on corresponding orthogonal polynomials.


Operator algebraic questions

The von Neumann algebra generated by s_q(h_i) , for h_i running through an orthonormal system (h_i)_ of vectors in \mathcal , reduces for q=0 to the famous free group factors L(F_) . Understanding the structure of those von Neumann algebras for general q has been a source of many investigations. It is now known, by work of Guionnet and Shlyakhtenko, that at least for finite I and for small values of q, the von Neumann algebra is isomorphic to the corresponding free group factor.


References

{{reflist Probability distributions