HOME

TheInfoList



OR:

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an ...
expressing the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions. The identity is :\sin^2 \theta + \cos^2 \theta = 1. As usual, means (\sin\theta)^2.


Proofs and their relationships to the Pythagorean theorem


Proof based on right-angle triangles

Any
similar triangles In Euclidean geometry, two objects are similar if they have the same shape, or one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly wi ...
have the property that if we select the same angle in all of them, the ratio of the two sides defining the angle is the same regardless of which similar triangle is selected, regardless of its actual size: the ratios depend upon the three angles, not the lengths of the sides. Thus for either of the similar right triangles in the figure, the ratio of its horizontal side to its hypotenuse is the same, namely cos θ. The elementary definitions of the sine and cosine functions in terms of the sides of a right triangle are: :\sin \theta = \frac= \frac :\cos \theta = \frac = \frac The Pythagorean identity follows by squaring both definitions above, and adding; the left-hand side of the identity then becomes :\frac which by the Pythagorean theorem is equal to 1. This definition is valid for all angles, due to the definition of defining x = \cos \theta and y = \sin \theta for the unit circle and thus x = c\cos \theta and y = c\sin \theta for a circle of radius c and reflecting our triangle in the y axis and setting a=x and b=y . Alternatively, the identities found at Trigonometric symmetry, shifts, and periodicity may be employed. By the periodicity identities we can say if the formula is true for then it is true for all real ''θ''. Next we prove the range to do this we let ''t'' will now be in the range We can then make use of squared versions of some basic shift identities (squaring conveniently removes the minus signs): : \sin^2\theta+\cos^2\theta = \sin^2\left(t+\frac\pi\right) + \cos^2\left(t+\frac\pi\right) = \cos^2t+\sin^2t = 1. All that remains is to prove it for this can be done by squaring the symmetry identities to get : \sin^2\theta=\sin^2(-\theta)\text\cos^2\theta=\cos^2(-\theta).


Related identities

The identities :1 + \tan^2 \theta = \sec^2 \theta and :1 + \cot^2 \theta = \csc^2 \theta are also called Pythagorean trigonometric identities. If one leg of a right triangle has length 1, then the tangent of the angle adjacent to that leg is the length of the other leg, and the secant of the angle is the length of the hypotenuse. : \tan \theta =\frac \ , and: : \sec \theta = \frac \ . In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity involving the cotangent and the cosecant also follows from the Pythagorean theorem. The following table gives the identities with the factor or divisor that relates them to the main identity.


Proof using the unit circle

The unit circle centered at the origin in the Euclidean plane is defined by the equation: This result can be found using the distance formula d = \sqrt for the distance from the origin to the point (x,\ y). See This approach assumes Pythagoras' theorem. Alternatively, one could simply substitute values and determine that the graph is a circle. :x^2 + y^2 = 1. Given an angle θ, there is a unique point ''P'' on the unit circle at an angle θ from the ''x''-axis, and the ''x''- and ''y''-coordinates of ''P'' are: :x = \cos \theta \ \mathrm \ y = \sin \theta \ . Consequently, from the equation for the unit circle: : \cos^2 \theta + \sin^2 \theta = 1 \ , the Pythagorean identity. In the figure, the point ''P'' has a ''negative'' x-coordinate, and is appropriately given by ''x'' = cos''θ'', which is a negative number: cos''θ'' = −cos(π−''θ'' ). Point ''P'' has a positive ''y''-coordinate, and sin''θ'' = sin(π−''θ'' ) > 0. As ''θ'' increases from zero to the full circle ''θ'' = 2π, the sine and cosine change signs in the various quadrants to keep ''x'' and ''y'' with the correct signs. The figure shows how the sign of the sine function varies as the angle changes quadrant. Because the ''x''- and ''y''-axes are perpendicular, this Pythagorean identity is equivalent to the Pythagorean theorem for triangles with hypotenuse of length 1 (which is in turn equivalent to the full Pythagorean theorem by applying a similar-triangles argument). See unit circle for a short explanation.


Proof using power series

The trigonometric functions may also be defined using power series, namely (for ''x'' an angle measured in radians): :\begin \sin x &= \sum_^\infty \frac x^,\\ \cos x &= \sum_^\infty \frac x^. \end Using the formal multiplication law for power series at Multiplication and division of power series (suitably modified to account for the form of the series here) we obtain : \begin \sin^2 x & = \sum_^\infty \sum_^\infty \frac \frac x^ \\ & = \sum_^\infty \left(\sum_^ \frac\right) x^ \\ & = \sum_^\infty \left( \sum_^ \right) \frac x^,\\ \cos^2 x & = \sum_^\infty \sum_^\infty \frac \frac x^ \\ & = \sum_^\infty \left(\sum_^n \frac\right) x^ \\ & = \sum_^\infty \left( \sum_^n \right) \frac x^. \end In the expression for sin2, ''n'' must be at least 1, while in the expression for cos2, the
constant term In mathematics, a constant term is a term in an algebraic expression that does not contain any variables and therefore is constant. For example, in the quadratic polynomial :x^2 + 2x + 3,\ the 3 is a constant term. After like terms are comb ...
is equal to 1. The remaining terms of their sum are (with common factors removed) :\sum_^n - \sum_^ = \sum_^ (-1)^j = (1 - 1)^ = 0 by the
binomial theorem In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
. Consequently, :\sin^2 x + \cos^2 x = 1 \ , which is the Pythagorean trigonometric identity. When the trigonometric functions are defined in this way, the identity in combination with the Pythagorean theorem shows that these power series parameterize the unit circle, which we used in the previous section. This definition constructs the sine and cosine functions in a rigorous fashion and proves that they are differentiable, so that in fact it subsumes the previous two.


Proof using the differential equation

Sine and cosine can be defined as the two solutions to the differential equation: ::y'' + y = 0 satisfying respectively and . It follows from the theory of
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
s that the first solution, sine, has the second, cosine, as its derivative, and it follows from this that the derivative of cosine is the negative of the sine. The identity is equivalent to the assertion that the function :z = \sin^2 x + \cos^2 x is constant and equal to 1. Differentiating using the
chain rule In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , ...
gives: : \frac z = 2 \sin x \ \cos x + 2 \cos x \ (-\sin x) = 0 \ , so ''z'' is constant. A calculation confirms that ''z''(0) = 1, and ''z'' is a constant so ''z'' = 1 for all ''x'', so the Pythagorean identity is established. A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine. In fact, the definitions by ordinary differential equation and by power series lead to similar derivations of most identities. This proof of the identity has no direct connection with Euclid's demonstration of the Pythagorean theorem.


Proof using Euler's formula

Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for a ...
states that :e^ = \cos\theta + i\sin\theta So, :\sin^2 \theta + \cos^2 \theta = (\cos\theta + i\sin\theta)(\cos\theta - i\sin\theta) = e^e^ = 1.


See also

*
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
* List of trigonometric identities * Unit circle * Power series *
Differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...


Notes

{{Authority control Mathematical identities Articles containing proofs Trigonometry
Identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an ...