HOME

TheInfoList



OR:

Proteinogenic amino acids are
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s that are incorporated biosynthetically into proteins during translation. The word "proteinogenic" means "protein creating". Throughout known life, there are 22 genetically encoded (proteinogenic) amino acids, 20 in the standard
genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
and an additional 2 ( selenocysteine and pyrrolysine) that can be incorporated by special translation mechanisms. In contrast,
non-proteinogenic amino acids In biochemistry, non-coded or non-proteinogenic amino acids are distinct from the 22 proteinogenic amino acids (21 in eukaryotesplus formylmethionine in eukaryotes with prokaryote organelles like mitochondria) which are naturally encoded in the g ...
are amino acids that are either not incorporated into proteins (like GABA, L-DOPA, or triiodothyronine), misincorporated in place of a genetically encoded amino acid, or not produced directly and in isolation by standard cellular machinery (like hydroxyproline). The latter often results from
post-translational modification Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribosom ...
of proteins. Some non-proteinogenic amino acids are incorporated into nonribosomal peptides which are synthesized by non-ribosomal peptide synthetases. Both eukaryotes and prokaryotes can incorporate selenocysteine into their proteins via a nucleotide sequence known as a
SECIS element In biology, the SECIS element (SECIS: ''selenocysteine insertion sequence'') is an RNA element around 60 nucleotides in length that adopts a stem-loop structure. This structural motif (pattern of nucleotides) directs the cell to translate UGA ...
, which directs the cell to translate a nearby UGA
codon The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links p ...
as selenocysteine (UGA is normally a
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon (nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in m ...
). In some methanogenic prokaryotes, the UAG codon (normally a stop codon) can also be translated to pyrrolysine. In eukaryotes, there are only 21 proteinogenic amino acids, the 20 of the standard genetic code, plus selenocysteine. Humans can synthesize 12 of these from each other or from other molecules of intermediary metabolism. The other nine must be consumed (usually as their protein derivatives), and so they are called
essential amino acid An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized from scratch by the organism fast enough to supply its demand, and must therefore come from the diet. Of the 21 amino acids common to all life form ...
s. The essential amino acids are
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the d ...
, isoleucine,
leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α- c ...
,
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −CO ...
, methionine, phenylalanine, threonine,
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic ...
, and valine (i.e. H, I, L, K, M, F, T, W, V). The proteinogenic amino acids have been found to be related to the set of
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s that can be recognized by ribozyme autoaminoacylation systems. Thus, non-proteinogenic amino acids would have been excluded by the contingent evolutionary success of nucleotide-based life forms. Other reasons have been offered to explain why certain specific non-proteinogenic amino acids are not generally incorporated into proteins; for example,
ornithine Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. The radical is ornithyl. Role in urea cycle L-Ornithine is one of the produc ...
and
homoserine Homoserine (also called isothreonine) is an α-amino acid with the chemical formula HO2CCH(NH2)CH2CH2OH. -Homoserine is not one of the common amino acids encoded by DNA. It differs from the proteinogenic amino acid serine by insertion of an additi ...
cyclize against the peptide backbone and fragment the protein with relatively short
half-lives Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
, while others are toxic because they can be mistakenly incorporated into proteins, such as the arginine analog canavanine. The evolutionary selection of certain proteinogenic amino acids from the primordial soup has been suggested to be because of their better incorporation into a polypeptide chain as opposed to non-proteinogenic amino acids.


Structures

The following illustrates the structures and abbreviations of the 21 amino acids that are directly encoded for protein synthesis by the genetic code of eukaryotes. The structures given below are standard chemical structures, not the typical zwitterion forms that exist in aqueous solutions. image:L-alanine-skeletal.png, L-Alanine
(Ala / A) image:L-arginine-skeletal-(tall).png, L-Arginine
(Arg / R) image:L-asparagine-skeletal.png, L-Asparagine
(Asn / N) image:L-aspartic-acid-skeletal.png, L-Aspartic acid
(Asp / D) image:L-cysteine-skeletal.png, L-Cysteine
(Cys / C) image:L-glutamic-acid-skeletal.png, L-Glutamic acid
(Glu / E) image:L-glutamine-skeletal.png, L-Glutamine
(Gln / Q) image:Glycine-skeletal.png,
Glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinogen ...

(Gly / G) image:L-histidine-skeletal.png, L-Histidine
(His / H) image:L-isoleucine-skeletal.svg, L-Isoleucine
(Ile / I) image:L-leucine-skeletal.png, L-Leucine
(Leu / L) image:L-lysine-skeletal.png, L-Lysine
(Lys / K) image:L-methionine-skeletal.png, L-Methionine
(Met / M) image:L-phenylalanine-skeletal.png, L-Phenylalanine
(Phe / F) image:L-proline-skeletal.png, L-Proline
(Pro / P) image:L-serine-skeletal.png, L-Serine
(Ser / S) image:L-threonine-skeletal.png, L-Threonine
(Thr / T) image:L-tryptophan-skeletal.png, L-Tryptophan
(Trp / W) image:L-tyrosine-skeletal.png, L-Tyrosine
(Tyr / Y) image:L-valine-skeletal.png, L-Valine
(Val / V)
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
/
IUBMB The International Union of Biochemistry and Molecular Biology (IUBMB) is an international non-governmental organisation concerned with biochemistry and molecular biology. Formed in 1955 as the International Union of Biochemistry (IUB), the union ...
now also recommends standard abbreviations for the following two amino acids: image:L-selenocysteine-2D-skeletal.png, L-Selenocysteine
(Sec / U) image:Pyrrolysine.svg, L-Pyrrolysine
(Pyl / O)


Chemical properties

Following is a table listing the one-letter symbols, the three-letter symbols, and the chemical properties of the side chains of the standard amino acids. The masses listed are based on weighted averages of the elemental isotopes at their natural abundances. Forming a peptide bond results in elimination of a molecule of water. Therefore, the protein's mass is equal to the mass of amino acids the protein is composed of minus 18.01524 Da per peptide bond.


General chemical properties


Side-chain properties

§: Values for Asp, Cys, Glu, His, Lys & Tyr were determined using the amino acid residue placed centrally in an alanine pentapeptide. The value for Arg is from Pace ''et al.'' (2009). The value for Sec is from Byun & Kang (2011). N.D.: The pKa value of Pyrrolysine has not been reported. Note: The pKa value of an amino-acid residue in a small peptide is typically slightly different when it is inside a protein. Protein pKa calculations are sometimes used to calculate the change in the pKa value of an amino-acid residue in this situation.


Gene expression and biochemistry

* UAG is normally the amber stop codon, but in organisms containing the biological machinery encoded by the pylTSBCD cluster of genes the amino acid pyrrolysine will be incorporated.
** UGA is normally the opal (or umber) stop codon, but encodes selenocysteine if a
SECIS element In biology, the SECIS element (SECIS: ''selenocysteine insertion sequence'') is an RNA element around 60 nucleotides in length that adopts a stem-loop structure. This structural motif (pattern of nucleotides) directs the cell to translate UGA ...
is present.
The
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon (nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in m ...
is not an amino acid, but is included for completeness.
†† UAG and UGA do not always act as stop codons (see above).
An essential amino acid cannot be synthesized in humans and must, therefore, be supplied in the diet. Conditionally essential amino acids are not normally required in the diet, but must be supplied
exogenously In a variety of contexts, exogeny or exogeneity () is the fact of an action or object originating externally. It contrasts with endogeneity or endogeny, the fact of being influenced within a system. Economics In an economic model, an exogen ...
to specific populations that do not synthesize it in adequate amounts.
& Occurrence of amino acids is based on 135 Archaea, 3775 Bacteria, 614 Eukaryota proteomes and human proteome (21 006 proteins) respectively.


Mass spectrometry

In mass spectrometry of peptides and proteins, knowledge of the masses of the residues is useful. The mass of the peptide or protein is the sum of the residue masses plus the mass of water (
Monoisotopic mass Monoisotopic mass (Mmi) is one of several types of molecular masses used in mass spectrometry. The theoretical monoisotopic mass of a molecule is computed by taking the sum of the accurate masses (including mass defect) of the most abundant natur ...
= 18.01056 Da; average mass = 18.0153 Da). The residue masses are calculated from the tabulated chemical formulas and atomic weights. In mass spectrometry, ions may also include one or more protons (
Monoisotopic mass Monoisotopic mass (Mmi) is one of several types of molecular masses used in mass spectrometry. The theoretical monoisotopic mass of a molecule is computed by taking the sum of the accurate masses (including mass defect) of the most abundant natur ...
= 1.00728 Da; average mass* = 1.0074 Da). *Protons cannot have an average mass, this confusingly infers to Deuterons as a valid isotope, but they should be a different species (see
Hydron (chemistry) In chemistry, the hydron, informally called proton, is the cationic form of atomic hydrogen, represented with the symbol . The general term "hydron", endorsed by the IUPAC, encompasses cations of hydrogen regardless of their isotopic composition ...
) §
Monoisotopic mass Monoisotopic mass (Mmi) is one of several types of molecular masses used in mass spectrometry. The theoretical monoisotopic mass of a molecule is computed by taking the sum of the accurate masses (including mass defect) of the most abundant natur ...


Stoichiometry and metabolic cost in cell

The table below lists the abundance of amino acids in ''E.coli'' cells and the metabolic cost (ATP) for synthesis of the amino acids. Negative numbers indicate the metabolic processes are energy favorable and do not cost net ATP of the cell. The abundance of amino acids includes amino acids in free form and in polymerization form (proteins).


Remarks


Catabolism

Amino acids can be classified according to the properties of their main products: * Glucogenic, with the products having the ability to form glucose by gluconeogenesis * Ketogenic, with the products not having the ability to form glucose: These products may still be used for
ketogenesis Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. The process supplies energy to certain organs, particularly the brain, heart and skeletal muscle, und ...
or lipid synthesis. * Amino acids catabolized into both glucogenic and ketogenic products


See also

* Glucogenic amino acid *
Ketogenic amino acid A ketogenic amino acid is an amino acid that can be degraded directly into acetyl-CoA, which is the precursor of ketone bodies and myelin, particularly during early childhood, when the developing brain requires high rates of myelin synthesis. This ...


References


General references

* * * *


External links


The origin of the single-letter code for the amino acids
{{Amino acids Nitrogen cycle Nutrition