Protein precipitation
   HOME

TheInfoList



OR:

Protein precipitation is widely used in
downstream processing Downstream processing refers to the recovery and the purification of biosynthetic products, particularly pharmaceuticals, from natural sources such as animal tissue, plant tissue or fermentation broth, including the recycling of salvageable com ...
of biological products in order to concentrate proteins and purify them from various contaminants. For example, in the
biotechnology Biotechnology is the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services. The term ''biotechnology'' was first used b ...
industry protein precipitation is used to eliminate contaminants commonly contained in blood. The underlying mechanism of precipitation is to alter the solvation potential of the solvent, more specifically, by lowering the
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubil ...
of the solute by addition of a reagent.


General principles

The
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubil ...
of proteins in aqueous buffers depends on the distribution of
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are no ...
and
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, th ...
amino acid residues on the protein's surface. Hydrophobic residues predominantly occur in the globular protein core, but some exist in patches on the surface. Proteins that have high hydrophobic
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
content on the surface have low solubility in an aqueous solvent. Charged and polar surface residues interact with ionic groups in the solvent and increase the solubility of a protein. Knowledge of a protein's amino acid composition will aid in determining an ideal precipitation solvent and methods.


Repulsive electrostatic force

Repulsive electrostatic forces form when proteins are dissolved in an
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dis ...
solution. These repulsive forces between proteins prevent aggregation and facilitate dissolution. Upon dissolution in an electrolyte solution, solvent
counterion 160px, Polystyrene sulfonate, a cation-exchange resin, is typically supplied with as the counterion.">cation-exchange_resin.html" ;"title="Polystyrene sulfonate, a cation-exchange resin">Polystyrene sulfonate, a cation-exchange resin, is typical ...
s migrate towards charged surface residues on the protein, forming a rigid matrix of counterions on the protein's surface. Next to this layer is another solvation layer that is less rigid and, as one moves away from the protein surface, contains a decreasing concentration of counterions and an increasing concentration of co-ions. The presence of these solvation layers cause the protein to have fewer ionic interactions with other proteins and decreases the likelihood of aggregation. Repulsive electrostatic forces also form when proteins are dissolved in water. Water forms a solvation layer around the hydrophilic surface residues of a protein. Water establishes a concentration gradient around the protein, with the highest concentration at the protein surface. This water network has a damping effect on the attractive forces between proteins. Image:IonicSolvationLayerNew.jpg, Ionic solvation layer Image:HydrationLayerNew.jpg, Hydration layer


Attractive electrostatic force

Dispersive or attractive forces exist between proteins through permanent and induced
dipoles In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways: *An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system ...
. For example, basic residues on a protein can have electrostatic interactions with acidic residues on another protein. However, solvation by ions in an electrolytic solution or water will decrease protein–protein attractive forces. Therefore, to precipitate or induce accumulation of proteins, the hydration layer around the protein should be reduced. The purpose of the added reagents in protein precipitation is to reduce the hydration layer. Image:HydrationLayer2New.jpg, Hydration layer


Precipitate formation

Protein precipitate formation occurs in a stepwise process. First, a precipitating agent is added and the solution is steadily mixed. Mixing causes the precipitant and protein to collide. Enough mixing time is required for molecules to diffuse across the fluid eddies. Next, proteins undergo a
nucleation In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that deter ...
phase, where submicroscopic sized protein aggregates, or particles, are generated. Growth of these particles is under Brownian diffusion control. Once the particles reach a critical size (0.1 µm to 10 µm for high and low
shear Shear may refer to: Textile production *Animal shearing, the collection of wool from various species **Sheep shearing *The removal of nap during wool cloth production Science and technology Engineering *Shear strength (soil), the shear strength ...
fields, respectively), by diffusive addition of individual protein molecules to it, they continue to grow by colliding into each other and sticking or
flocculating Flocculation, in the field of chemistry, is a process by which colloidal particles come out of suspension to sediment under the form of floc or flake, either spontaneously or due to the addition of a clarifying agent. The action differs from pr ...
. This phase occurs at a slower rate. During the final step, called aging in a shear field, the precipitate particles repeatedly collide and stick, then break apart, until a stable mean particle size is reached, which is dependent upon individual proteins. The mechanical strength of the protein particles correlates with the product of the mean shear rate and the aging time, which is known as the Camp number. Aging helps particles withstand the fluid shear forces encountered in pumps and centrifuge feed zones without reducing in size.


Methods


Salting out

Salting out Salting out (also known as salt-induced precipitation, salt fractionation, anti-solvent crystallization, precipitation crystallization, or drowning out) is a purification technique that utilizes the reduced solubility of certain molecules in a s ...
is the most common method used to precipitate a protein. Addition of a neutral salt, such as
ammonium sulfate Ammonium sulfate (American English and international scientific usage; ammonium sulphate in British English); (NH4)2SO4, is an inorganic salt with a number of commercial uses. The most common use is as a soil fertilizer. It contains 21% nitrogen a ...
, compresses the solvation layer and increases protein–protein interactions. As the salt concentration of a solution is increased, the charges on the surface of the protein interact with the salt, not the water, thereby exposing hydrophobic patches on the protein surface and causing the protein to fall out of solution (aggregate and precipitate).


Energetics involved in salting out

Salting out is a
spontaneous process In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamica ...
when the right concentration of the salt is reached in solution. The hydrophobic patches on the protein surface generate highly ordered water shells. This results in a small decrease in
enthalpy Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant ...
, Δ''H'', and a larger decrease in
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
, Δ''S,'' of the ordered water molecules relative to the molecules in the bulk solution. The overall free energy change, Δ''G'', of the process is given by the Gibbs free energy equation: : \Delta G = \Delta H - T \Delta S. Δ''G'' = Free energy change, Δ''H'' = Enthalpy change upon precipitation, Δ''S'' = Entropy change upon precipitation, ''T'' = Absolute temperature. When water molecules in the rigid solvation layer are brought back into the bulk phase through interactions with the added salt, their greater freedom of movement causes a significant increase in their entropy. Thus, Δ''G'' becomes negative and precipitation occurs spontaneously.


Hofmeister series

Kosmotropes or "water structure stabilizers" are salts which promote the dissipation / dispersion of water from the solvation layer around a protein. Hydrophobic patches are then exposed on the protein's surface, and they interact with hydrophobic patches on other proteins. These salts enhance protein aggregation and precipitation. Chaotropes or "water structure breakers," have the opposite effect of Kosmotropes. These salts promote an increase in the solvation layer around a protein. The effectiveness of the kosmotropic salts in precipitating proteins follows the order of the Hofmeister series: Most precipitation \mathrm least precipitation Most precipitation \mathrm least precipitation


Salting out in practice

The decrease in protein solubility follows a normalized solubility curve of the type shown. The relationship between the solubility of a protein and increasing ionic strength of the solution can be represented by the
Cohn Cohn is a Jewish surname (related to the last name Cohen). Notable people sharing the surname "Cohn" * Al Cohn (1925–1988), American jazz saxophonist, arranger and composer * Alan D. Cohn, American government official * Alfred A. Cohn (1880 ...
equation: : \log S = B - KI \, ''S'' = solubility of the protein, ''B'' is idealized solubility, ''K'' is a salt-specific constant and ''I'' is the ionic strength of the solution, which is attributed to the added salt. I = \begin\frac\end\sum_^ c_z_^ ''z''''i'' is the ion charge of the salt and ''c''''i'' is the salt concentration. The ideal salt for protein precipitation is most effective for a particular amino acid composition, inexpensive, non-buffering, and non-polluting. The most commonly used salt is
ammonium sulfate Ammonium sulfate (American English and international scientific usage; ammonium sulphate in British English); (NH4)2SO4, is an inorganic salt with a number of commercial uses. The most common use is as a soil fertilizer. It contains 21% nitrogen a ...
. There is a low variation in salting out over temperatures 0 °C to 30 °C. Protein precipitates left in the salt solution can remain stable for years-protected from
proteolysis Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called protease ...
and bacterial contamination by the high salt concentrations. Image:SolubilityCurveNew.jpg, Solubility curve


Isoelectric precipitation

The
isoelectric point The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). However, pI is also u ...
(pI) is the pH of a solution at which the net primary charge of a protein becomes zero. At a solution pH that is above the pI the surface of the protein is predominantly negatively charged and therefore like-charged molecules will exhibit repulsive forces. Likewise, at a solution pH that is below the pI, the surface of the protein is predominantly positively charged and repulsion between proteins occurs. However, at the pI the negative and positive charges cancel, repulsive electrostatic forces are reduced and the attraction forces predominate. The attraction forces will cause aggregation and precipitation. The pI of most proteins is in the pH range of 4–6. Mineral acids, such as
hydrochloric Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid. It is a component of the gastric acid in the digestiv ...
and
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
are used as precipitants. The greatest disadvantage to isoelectric point precipitation is the irreversible denaturation caused by the mineral acids. For this reason isoelectric point precipitation is most often used to precipitate contaminant proteins, rather than the target protein. The precipitation of casein during cheesemaking, or during production of sodium caseinate, is an isoelectric precipitation.


Precipitation with miscible solvents

Addition of
miscible Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
solvents such as
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an Alcohol (chemistry), alcohol with the chemical formula . Its formula can be also written as or (an ethyl ...
or
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
to a solution may cause proteins in the solution to precipitate. The solvation layer around the protein will decrease as the organic solvent progressively displaces water from the protein surface and binds it in hydration layers around the organic solvent molecules. With smaller hydration layers, the proteins can aggregate by attractive electrostatic and dipole forces. Important parameters to consider are temperature, which should be less than 0 °C to avoid denaturation, pH and protein concentration in solution. Miscible organic solvents decrease the
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulat ...
of water, which in effect allows two proteins to come close together. At the
isoelectric point The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). However, pI is also u ...
the relationship between the dielectric constant and protein solubility is given by: : \log S = k/e^ + \log S^ \, ''S''0 is an extrapolated value of ''S'', ''e'' is the dielectric constant of the mixture and ''k'' is a constant that relates to the dielectric constant of water. The
Cohn process The Cohn process, developed by Edwin J. Cohn, is a series of purification steps with the purpose of extracting albumin from blood plasma. The process is based on the differential solubility of albumin and other plasma proteins based on pH, ethano ...
for plasma protein fractionation relies on solvent precipitation with ethanol to isolate individual plasma proteins. a clinical application for the use of methanol as a protein precipitating agent is in the estimation of bilirubin.


Non-ionic hydrophilic polymers

Polymers A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic an ...
, such as
dextrans Dextran is a complex branched glucan ( polysaccharide derived from the condensation of glucose), originally derived from wine. IUPAC defines dextrans as "Branched poly-α-d-glucosides of microbial origin having glycosidic bonds predominantly C-1 ...
and
polyethylene glycol Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular we ...
s, are frequently used to precipitate proteins because they have low flammability and are less likely to denature biomaterials than isoelectric precipitation. These polymers in solution attract water molecules away from the solvation layer around the protein. This increases the protein–protein interactions and enhances precipitation. For the specific case of polyethylene glycol, precipitation can be modeled by the equation: : \ln(S) + pS = X - aC \, ''C'' is the polymer concentration, ''P'' is a protein–protein interaction coefficient, ''a'' is a protein–polymer interaction coefficient and : x = (\mu_i - \mu_i^)RT ''μ'' is the
chemical potential In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species ...
of component I, ''R'' is the
universal gas constant The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per ...
and ''T'' is the absolute temperature.


Flocculation by polyelectrolytes

Alginate Alginic acid, also called algin, is a naturally occurring, edible polysaccharide found in brown algae. It is hydrophilic and forms a viscous gum when hydrated. With metals such as sodium and calcium, its salts are known as alginates. Its colour ...
, carboxymethylcellulose, polyacrylic acid,
tannic acid Tannic acid is a specific form of tannin, a type of polyphenol. Its weak acidity ( pKa around 6) is due to the numerous phenol groups in the structure. The chemical formula for commercial tannic acid is often given as C76H52O46, which correspon ...
and polyphosphates can form extended networks between protein molecules in solution. The effectiveness of these
polyelectrolytes Polyelectrolytes are polymers whose repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are t ...
depend on the pH of the solution. Anionic polyelectrolytes are used at pH values less than the isoelectric point. Cationic polyelectrolytes are at pH values above the pI. It is important to note that an excess of polyelectrolytes will cause the precipitate to dissolve back into the solution. An example of polyelectrolyte flocculation is the removal of protein cloud from beer wort using Irish moss.


Polyvalent metallic ions

Metal salts can be used at low concentrations to precipitate enzymes and
nucleic acids Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main clas ...
from solutions. Polyvalent metal
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
frequently used are Ca2+, Mg2+, Mn2+ or Fe2+.


Precipitation reactors

There are numerous industrial scaled reactors than can be used to precipitate large amounts of proteins, such as recombinant
DNA polymerases A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create ...
from a solutio


Batch reactors

Batch reactors are the simplest type of precipitation reactor. The precipitating agent is slowly added to the protein solution under mixing. The aggregating protein particles tend to be compact and regular in shape. Since the particles are exposed to a wide range of shear stresses for a long period of time, they tend to be compact, dense and mechanically stable.


Tubular reactors

In tubular reactors, feed protein solution and the precipitating reagent are contacted in a zone of efficient mixing then fed into long tubes where precipitation takes place. The fluid in volume elements approach
plug flow In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. T ...
as they move though the tubes of the reactor. Turbulent flow is promoted through wire mesh inserts in the tube. The tubular reactor does not require moving mechanical parts and is inexpensive to build. However, the reactor can become impractically long if the particles aggregate slowly.


Continuous stirred tank reactors (CSTR)

CSTR reactors run at
steady state In systems theory, a system or a Process theory, process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those p ...
with a continuous flow of reactants and products in a well-mixed tank. Fresh protein feed contacts
slurry A slurry is a mixture of denser solids suspended in liquid, usually water. The most common use of slurry is as a means of transporting solids or separating minerals, the liquid being a carrier that is pumped on a device such as a centrifugal pu ...
that already contains precipitate particles and the precipitation reagents.


References

*{{cite journal , author = Zellner, date=June 2005 , title = Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets , journal =
Electrophoresis Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric fie ...
, volume = 26 , issue = 12 , pages = 2481–9 , doi = 10.1002/elps.200410262 , pmid = 15895463, display-authors=etal *Harrison et al., ''Bioseparations Science and Engineering.'' Oxford University Press. New York, NY 2003. *Shuler et al., ''Bioprocess Engineering: Basic Concepts'' (2nd Edition). Prentice Hall International. 2001 *Ladisch. ''Bioseparations Engineering''. John Wiley & Sons, Inc. New York, NY 2001. *Lydersen. ''Bioprocess Engineering.'' John Wiley & Sons, Inc. New York, NY 1994. *Belter, Paul A. ''Bioseparations: downstream processing for biotechnology.'' John Wiley & Sons, Inc. New York, NY 1988. Biotechnology