HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a product is the result of multiplication, or an expression that identifies
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
(numbers or variables) to be multiplied, called ''factors''. For example, 30 is the product of 6 and 5 (the result of multiplication), and x\cdot (2+x) is the product of x and (2+x) (indicating that the two factors should be multiplied together). The order in which real or complex numbers are multiplied has no bearing on the product; this is known as the '' commutative law'' of multiplication. When matrices or members of various other associative algebras are multiplied, the product usually depends on the order of the factors. Matrix multiplication, for example, is non-commutative, and so is multiplication in other algebras in general as well. There are many different kinds of products in mathematics: besides being able to multiply just numbers, polynomials or matrices, one can also define products on many different algebraic structures.


Product of two numbers


Product of a sequence

The product operator for the product of a sequence is denoted by the capital Greek letter pi Π (in analogy to the use of the capital Sigma Σ as summation symbol). For example, the expression \textstyle \prod_^i^2is another way of writing 1 \cdot 4 \cdot 9 \cdot 16 \cdot 25 \cdot 36. The product of a sequence consisting of only one number is just that number itself; the product of no factors at all is known as the empty product, and is equal to 1.


Commutative rings

Commutative rings have a product operation.


Residue classes of integers

Residue classes in the rings \Z/N\Z can be added: :(a + N\Z) + (b + N\Z) = a + b + N\Z and multiplied: :(a + N\Z) \cdot (b + N\Z) = a \cdot b + N\Z


Convolution

Two functions from the reals to itself can be multiplied in another way, called the
convolution In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' ...
. If : \int\limits_^\infty , f(t), \,\mathrmt < \infty\qquad\mbox\qquad \int\limits_^\infty , g(t), \,\mathrmt < \infty, then the integral :(f*g) (t) \;:= \int\limits_^\infty f(\tau)\cdot g(t - \tau)\,\mathrm\tau is well defined and is called the convolution. Under the Fourier transform, convolution becomes point-wise function multiplication.


Polynomial rings

The product of two polynomials is given by the following: :\left(\sum_^n a_i X^i\right) \cdot \left(\sum_^m b_j X^j\right) = \sum_^ c_k X^k with : c_k = \sum_ a_i \cdot b_j


Products in linear algebra

There are many different kinds of products in linear algebra. Some of these have confusingly similar names ( outer product, exterior product) with very different meanings, while others have very different names (outer product, tensor product, Kronecker product) and yet convey essentially the same idea. A brief overview of these is given in the following sections.


Scalar multiplication

By the very definition of a vector space, one can form the product of any scalar with any vector, giving a map \R \times V \rightarrow V.


Scalar product

A scalar product is a bi-linear map: :\cdot : V \times V \rightarrow \R with the following conditions, that v \cdot v > 0 for all 0 \not= v \in V. From the scalar product, one can define a norm by letting \, v\, := \sqrt . The scalar product also allows one to define an angle between two vectors: :\cos\angle(v, w) = \frac In n-dimensional Euclidean space, the standard scalar product (called the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alg ...
) is given by: :\left(\sum_^n \alpha_i e_i\right) \cdot \left(\sum_^n \beta_i e_i\right) = \sum_^n \alpha_i\,\beta_i


Cross product in 3-dimensional space

The cross product of two vectors in 3-dimensions is a vector perpendicular to the two factors, with length equal to the area of the parallelogram spanned by the two factors. The cross product can also be expressed as the formal
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if a ...
: :\mathbf = \begin \mathbf & \mathbf & \mathbf \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \end


Composition of linear mappings

A linear mapping can be defined as a function ''f'' between two vector spaces ''V'' and ''W'' with underlying field F, satisfying :f(t_1 x_1 + t_2 x_2) = t_1 f(x_1) + t_2 f(x_2), \forall x_1, x_2 \in V, \forall t_1, t_2 \in \mathbb. If one only considers finite dimensional vector spaces, then :f(\mathbf) = f\left(v_i \mathbf^i\right) = v_i f\left(\mathbf^i\right) = _j v_i \mathbf^j, in which bV and bW denote the bases of ''V'' and ''W'', and ''vi'' denotes the
component Circuit Component may refer to: •Are devices that perform functions when they are connected in a circuit.   In engineering, science, and technology Generic systems * System components, an entity with discrete structure, such as an assem ...
of v on bV''i'', and Einstein summation convention is applied. Now we consider the composition of two linear mappings between finite dimensional vector spaces. Let the linear mapping ''f'' map ''V'' to ''W'', and let the linear mapping ''g'' map ''W'' to ''U''. Then one can get :g \circ f(\mathbf) = g\left(_j v_i \mathbf^j\right) = _k _j v_i \mathbf^k. Or in matrix form: :g \circ f(\mathbf) = \mathbf \mathbf \mathbf, in which the ''i''-row, ''j''-column element of F, denoted by ''Fij'', is ''fji'', and ''Gij=gji''. The composition of more than two linear mappings can be similarly represented by a chain of matrix multiplication.


Product of two matrices

Given two matrices :A = (a_)_ \in \R^ and B = (b_)_\in \R^ their product is given by :B \cdot A = \left( \sum_^r a_ \cdot b_ \right)_ \;\in\R^


Composition of linear functions as matrix product

There is a relationship between the composition of linear functions and the product of two matrices. To see this, let r = dim(U), s = dim(V) and t = dim(W) be the (finite) dimensions of vector spaces U, V and W. Let \mathcal U = \ be a basis of U, \mathcal V = \ be a basis of V and \mathcal W = \ be a basis of W. In terms of this basis, let A = M^_(f) \in \R^ be the matrix representing f : U → V and B = M^_(g) \in \R^ be the matrix representing g : V → W. Then :B\cdot A = M^_ (g \circ f) \in \R^ is the matrix representing g \circ f : U \rightarrow W. In other words: the matrix product is the description in coordinates of the composition of linear functions.


Tensor product of vector spaces

Given two finite dimensional vector spaces ''V'' and ''W'', the tensor product of them can be defined as a (2,0)-tensor satisfying: :V \otimes W(v, m) = V(v) W(w), \forall v \in V^*, \forall w \in W^*, where ''V*'' and ''W*'' denote the dual spaces of ''V'' and ''W''. For infinite-dimensional vector spaces, one also has the: * Tensor product of Hilbert spaces *
Topological tensor product In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products (see Tensor product of Hi ...
. The tensor product, outer product and
Kronecker product In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a generalization of the outer product (which is denoted by the same symbol) from vectors to ...
all convey the same general idea. The differences between these are that the Kronecker product is just a tensor product of matrices, with respect to a previously-fixed basis, whereas the tensor product is usually given in its intrinsic definition. The outer product is simply the Kronecker product, limited to vectors (instead of matrices).


The class of all objects with a tensor product

In general, whenever one has two mathematical
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
that can be combined in a way that behaves like a linear algebra tensor product, then this can be most generally understood as the internal product of a
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left ...
. That is, the monoidal category captures precisely the meaning of a tensor product; it captures exactly the notion of why it is that tensor products behave the way they do. More precisely, a monoidal category is the
class Class or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differently ...
of all things (of a given type) that have a tensor product.


Other products in linear algebra

Other kinds of products in linear algebra include: * Hadamard product *
Kronecker product In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a generalization of the outer product (which is denoted by the same symbol) from vectors to ...
* The product of tensors: ** Wedge product or exterior product ** Interior product ** Outer product **
Tensor product In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otime ...


Cartesian product

In
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
, a Cartesian product is a mathematical operation which returns a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
(or product set) from multiple sets. That is, for sets ''A'' and ''B'', the Cartesian product is the set of all ordered pairs —where and . The class of all things (of a given type) that have Cartesian products is called a Cartesian category. Many of these are
Cartesian closed categories In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mat ...
. Sets are an example of such objects.


Empty product

The empty product on numbers and most algebraic structures has the value of 1 (the identity element of multiplication), just like the empty sum has the value of 0 (the identity element of addition). However, the concept of the empty product is more general, and requires special treatment in
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from prem ...
,
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
,
computer programming Computer programming is the process of performing a particular computation (or more generally, accomplishing a specific computing result), usually by designing and building an executable computer program. Programming involves tasks such as anal ...
and category theory.


Products over other algebraic structures

Products over other kinds of algebraic structures include: * the Cartesian product of sets * the direct product of groups, and also the semidirect product, knit product and wreath product * the free product of groups * the product of rings * the product of ideals * the product of topological spaces * the Wick product of random variables * the cap,
cup A cup is an open-top used to hold hot or cold liquids for pouring or drinking; while mainly used for drinking, it also can be used to store solids for pouring (e.g., sugar, flour, grains, salt). Cups may be made of glass, metal, china, cl ...
,
Massey Massey may refer to: Places Canada * Massey, Ontario * Massey Island, Nunavut New Zealand * Massey, New Zealand, an Auckland suburb United States * Massey, Alabama * Massey, Iowa * Massey, Maryland People * Massey (surname) Educatio ...
and
slant product In algebraic topology the cap product is a method of adjoining a chain of degree ''p'' with a cochain of degree ''q'', such that ''q'' ≤ ''p'', to form a composite chain of degree ''p'' − ''q''. It was introduced by Eduard Čech in 1936, ...
in algebraic topology * the
smash product In topology, a branch of mathematics, the smash product of two pointed spaces (i.e. topological spaces with distinguished basepoints) (''X,'' ''x''0) and (''Y'', ''y''0) is the quotient of the product space ''X'' × ''Y'' under the ...
and
wedge sum In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if ''X'' and ''Y'' are pointed spaces (i.e. topological spaces with distinguished basepoints x_0 and y_0) the wedge sum of ''X'' and ''Y'' is the q ...
(sometimes called the wedge product) in
homotopy In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deform ...
A few of the above products are examples of the general notion of an internal product in a
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left ...
; the rest are describable by the general notion of a product in category theory.


Products in category theory

All of the previous examples are special cases or examples of the general notion of a product. For the general treatment of the concept of a product, see
product (category theory) In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rin ...
, which describes how to combine two
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
of some kind to create an object, possibly of a different kind. But also, in category theory, one has: * the fiber product or pullback, * the product category, a category that is the product of categories. * the ultraproduct, in model theory. * the internal product of a
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left ...
, which captures the essence of a tensor product.


Other products

* A function's product integral (as a continuous equivalent to the product of a sequence or as the multiplicative version of the normal/standard/additive integral. The product integral is also known as "continuous product" or "multiplical". * Complex multiplication, a theory of elliptic curves.


See also

* * Indefinite product * Infinite product * *


Notes


References


Bibliography

* {{DEFAULTSORT:Product (Mathematics) Multiplication