HOME

TheInfoList



OR:

A pressurized water reactor (PWR) is a type of light-water
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan and Canada). In a PWR, the primary coolant (
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators. PWRs were originally designed to serve as nuclear marine propulsion for nuclear submarines and were used in the original design of the second commercial power plant at Shippingport Atomic Power Station. PWRs currently operating in the United States are considered
Generation II reactor A generation II reactor is a design classification for a nuclear reactor, and refers to the class of commercial reactors built until the end of the 1990s. Prototypical and older versions of PWR, CANDU, BWR, AGR, RBMK and VVER are among them. ...
s. Russia's VVER reactors are similar to US PWRs, but the VVER-1200 is not considered Generation II (see below). France operates many PWRs to generate the bulk of its electricity.


History

Several hundred PWRs are used for marine propulsion in aircraft carriers, nuclear submarines and ice breakers. In the US, they were originally designed at the
Oak Ridge National Laboratory Oak Ridge National Laboratory (ORNL) is a U.S. multiprogram science and technology national laboratory sponsored by the U.S. Department of Energy (DOE) and administered, managed, and operated by UT–Battelle as a federally funded research an ...
for use as a nuclear submarine power plant with a fully operational submarine power plant located at the Idaho National Laboratory. Follow-on work was conducted by Westinghouse Bettis Atomic Power Laboratory. The first purely commercial nuclear power plant at Shippingport Atomic Power Station was originally designed as a pressurized water reactor (although the first power plant connected to the grid was at Obninsk, USSR), on insistence from Admiral Hyman G. Rickover that a viable commercial plant would include none of the "crazy thermodynamic cycles that everyone else wants to build". The United States Army Nuclear Power Program operated pressurized water reactors from 1954 to 1974.
Three Mile Island Nuclear Generating Station Three Mile Island Nuclear Generating Station (commonly abbreviated as TMI) is a closed nuclear power plant on Three Mile Island in Londonderry Township, Dauphin County, Pennsylvania on Lake Frederic, a reservoir in the Susquehanna River just ...
initially operated two pressurized water reactor plants, TMI-1 and TMI-2. The partial meltdown of TMI-2 in 1979 essentially ended the growth in new construction of nuclear power plants in the United States for two decades. Watts Bar unit 2 (a Westinghouse 4-loop PWR) came online in 2016, becoming the first new nuclear reactor in the United States since 1996. The pressurized water reactor has several new Generation III reactor evolutionary designs: the AP1000, VVER-1200, ACPR1000+, APR1400, Hualong One, IPWR-900 and EPR. The first AP1000 and EPR reactors were connected to the power grid in China in 2018. In 2020, NuScale Power became the first U.S. company to receive regulatory approval from the Nuclear Regulatory Commission for a small modular reactor with a modified PWR design. Also in 2020, the Energy Impact Center introduced the
OPEN100 OPEN100 is a project that publishes open-source blueprints to build nuclear power plants. Its stated goal is to reduce the cost and duration of nuclear reactor construction and increase the nuclear power supply 100-fold by 2040 to aid in the decar ...
project, which published open-source blueprints for the construction of a 100 MWelectric nuclear power plant with a PWR design.


Design

Nuclear fuel in the reactor pressure vessel is engaged in a controlled fission chain reaction, which produces heat, heating the water in the primary coolant loop by thermal conduction through the fuel cladding. The hot primary coolant is pumped into a heat exchanger called the steam generator, where it flows through several thousand small tubes. Heat is transferred through the walls of these tubes to the lower pressure secondary coolant located on the sheet side of the exchanger where the secondary coolant evaporates to pressurized steam. This transfer of heat is accomplished without mixing the two fluids to prevent the secondary coolant from becoming radioactive. Some common steam generator arrangements are u-tubes or single pass heat exchangers. In a nuclear power station, the pressurized steam is fed through a steam turbine which drives an
electrical generator In electricity generation, a generator is a device that converts motive power ( mechanical energy) or fuel-based power ( chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, ...
connected to the electric grid for transmission. After passing through the turbine the secondary coolant (water-steam mixture) is cooled down and condensed in a condenser. The condenser converts the steam to a liquid so that it can be pumped back into the steam generator, and maintains a vacuum at the turbine outlet so that the pressure drop across the turbine, and hence the energy extracted from the steam, is maximized. Before being fed into the steam generator, the condensed steam (referred to as feedwater) is sometimes preheated in order to minimize thermal shock. The steam generated has other uses besides power generation. In nuclear ships and submarines, the steam is fed through a steam turbine connected to a set of speed reduction gears to a shaft used for propulsion. Direct mechanical action by expansion of the steam can be used for a steam-powered aircraft catapult or similar applications.
District heating District heating (also known as heat networks or teleheating) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating ...
by the steam is used in some countries and direct heating is applied to internal plant applications. Two things are characteristic for the pressurized water reactor (PWR) when compared with other reactor types: coolant loop separation from the steam system and pressure inside the primary coolant loop. In a PWR, there are two separate coolant loops (primary and secondary), which are both filled with demineralized/deionized water. A boiling water reactor, by contrast, has only one coolant loop, while more exotic designs such as breeder reactors use substances other than water for coolant and moderator (e.g. sodium in its liquid state as coolant or graphite as a moderator). The pressure in the primary coolant loop is typically , which is notably higher than in other
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
s, and nearly twice that of a boiling water reactor (BWR). As an effect of this, only localized boiling occurs and steam will recondense promptly in the bulk fluid. By contrast, in a boiling water reactor the primary coolant is designed to boil.


Reactor


Coolant

Light water is used as the primary coolant in a PWR. Water enters through the bottom of the reactor's core at about and is heated as it flows upwards through the reactor core to a temperature of about . The water remains liquid despite the high temperature due to the high pressure in the primary coolant loop, usually around 155
bar Bar or BAR may refer to: Food and drink * Bar (establishment), selling alcoholic beverages * Candy bar * Chocolate bar Science and technology * Bar (river morphology), a deposit of sediment * Bar (tropical cyclone), a layer of cloud * Bar ( ...
(15.0  MPa 153  atm, 2,250  psi). The water in a PWR cannot exceed a temperature of or a pressure of 22.064 MPa (3200 psi or 218 atm), because those are the critical point of water. Supercritical water reactors are (as of 2022) only a proposed concept in which the coolant would never leave the supercritical state. However, as this requires even higher pressures than a PWR and can cause issues of corrosion, so far no such reactor has been built.


Pressurizer

Pressure in the primary circuit is maintained by a pressurizer, a separate vessel that is connected to the primary circuit and partially filled with water which is heated to the saturation temperature (boiling point) for the desired pressure by submerged electrical heaters. To achieve a pressure of , the pressurizer temperature is maintained at 345 °C (653 °F), which gives a subcooling margin (the difference between the pressurizer temperature and the highest temperature in the reactor core) of 30 °C (54 °F). As 345 °C is the boiling point of water at 155 bar, the liquid water is at the edge of a phase change. Thermal transients in the reactor coolant system result in large swings in pressurizer liquid/steam volume, and total pressurizer volume is designed around absorbing these transients without uncovering the heaters or emptying the pressurizer. Pressure transients in the primary coolant system manifest as temperature transients in the pressurizer and are controlled through the use of automatic heaters and water spray, which raise and lower pressurizer temperature, respectively.


Pumps

The coolant is pumped around the primary circuit by powerful pumps. These pumps have a rate of ~100,000 gallons of coolant per minute. After picking up heat as it passes through the reactor core, the primary coolant transfers heat in a steam generator to water in a lower pressure secondary circuit, evaporating the secondary coolant to saturated steam — in most designs 6.2 MPa (60 atm, 900  psia), 275 °C (530 °F) — for use in the steam turbine. The cooled primary coolant is then returned to the reactor vessel to be heated again.


Moderator

Pressurized water reactors, like all
thermal reactor A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and struct ...
designs, require the fast fission neutrons to be slowed (a process called moderation or thermalizing) in order to interact with the nuclear fuel and sustain the chain reaction. In PWRs the coolant water is used as a moderator by letting the neutrons undergo multiple collisions with light hydrogen atoms in the water, losing speed in the process. This "moderating" of neutrons will happen more often when the water is more dense (more collisions will occur). The use of water as a moderator is an important safety feature of PWRs, as an increase in temperature may cause the water to expand, giving greater 'gaps' between the water molecules and reducing the probability of thermalization — thereby reducing the extent to which neutrons are slowed and hence reducing the reactivity in the reactor. Therefore, if reactivity increases beyond normal, the reduced moderation of neutrons will cause the chain reaction to slow down, producing less heat. This property, known as the negative temperature coefficient of reactivity, makes PWR reactors very stable. This process is referred to as 'Self-Regulating', i.e. the hotter the coolant becomes, the less reactive the plant becomes, shutting itself down slightly to compensate and vice versa. Thus the plant controls itself around a given temperature set by the position of the control rods. In contrast, the RBMK reactor design used at Chernobyl, which uses graphite instead of water as the moderator and uses boiling water as the coolant, has a large positive thermal coefficient of reactivity that increases heat generation when coolant water temperatures increase. This makes the RBMK design less stable than pressurized water reactors. In addition to its property of slowing down neutrons when serving as a moderator, water also has a property of absorbing neutrons, albeit to a lesser degree. When the coolant water temperature increases, the boiling increases, which creates voids. Thus there is less water to absorb thermal neutrons that have already been slowed by the graphite moderator, causing an increase in reactivity. This property is called the void coefficient of reactivity, and in an RBMK reactor like Chernobyl, the void coefficient is positive, and fairly large, causing rapid transients. This design characteristic of the RBMK reactor is generally seen as one of several causes of the Chernobyl disaster. Heavy water has very low neutron absorption, so
heavy water reactor A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water ( deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The ...
s tend to have a positive void coefficient, though the
CANDU The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. C ...
reactor design mitigates this issue by using unenriched, natural uranium; these reactors are also designed with a number of passive safety systems not found in the original RBMK design. In a case of total loss of the coolant/moderator (in a reactor where heavy water is both the coolant and the moderator) an automatic
scram A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reacto ...
occurs, just as would happen in a light water reactor. Furthermore, no criticality occurs when a heavy water reactor is supplied with (ordinary) light water as an emergency coolant. Depending on burnup, boric acid or another neutron poison will have to be added to emergency coolant to avoid a criticality accident. PWRs are designed to be maintained in an undermoderated state, meaning that there is room for increased water volume or density to further increase moderation, because if moderation were near saturation, then a reduction in density of the moderator/coolant could reduce neutron absorption significantly while reducing moderation only slightly, making the void coefficient positive. Also, light water is actually a somewhat stronger moderator of neutrons than heavy water, though heavy water's neutron absorption is much lower. Because of these two facts, light water reactors have a relatively small moderator volume and therefore have compact cores. One next generation design, the supercritical water reactor, is even less moderated. A less moderated neutron energy spectrum does worsen the capture/fission ratio for 235U and especially 239Pu, meaning that more fissile nuclei fail to fission on neutron absorption and instead capture the neutron to become a heavier nonfissile isotope, wasting one or more neutrons and increasing accumulation of heavy transuranic actinides, some of which have long half-lives.


Fuel

After enrichment, the uranium dioxide () powder is fired in a high-temperature,
sintering Clinker nodules produced by sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing ...
furnace to create hard, ceramic pellets of enriched uranium dioxide. The cylindrical pellets are then clad in a corrosion-resistant zirconium metal alloy
Zircaloy Zirconium alloys are solid solutions of zirconium or other metals, a common subgroup having the trade mark Zircaloy. Zirconium has very low absorption cross-section of thermal neutrons, high hardness, ductility and corrosion resistance. One of the ...
which are backfilled with helium to aid heat conduction and detect leakages.
Zircaloy Zirconium alloys are solid solutions of zirconium or other metals, a common subgroup having the trade mark Zircaloy. Zirconium has very low absorption cross-section of thermal neutrons, high hardness, ductility and corrosion resistance. One of the ...
is chosen because of its mechanical properties and its low absorption cross section. The finished fuel rods are grouped in fuel assemblies, called fuel bundles, that are then used to build the core of the reactor. A typical PWR has fuel assemblies of 200 to 300 rods each, and a large reactor would have about 150–250 such assemblies with 80–100 tons of uranium in all. Generally, the fuel bundles consist of fuel rods bundled 14 × 14 to 17 × 17. A PWR produces on the order of 900 to 1,600 MWe. PWR fuel bundles are about 4 meters in length. Refuelings for most commercial PWRs is on an 18–24 month cycle. Approximately one third of the core is replaced each refueling, though some more modern refueling schemes may reduce refuel time to a few days and allow refueling to occur on a shorter periodicity.


Control

In PWRs reactor power can be viewed as following steam (turbine) demand due to the reactivity feedback of the temperature change caused by increased or decreased steam flow. (See:
Negative temperature coefficient A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property ''R'' that changes when the temperature changes by ''dT'', the temperature coefficient α is def ...
.) Boron and cadmium control rods are used to maintain primary system temperature at the desired point. In order to decrease power, the operator throttles shut turbine inlet valves. This would result in less steam being drawn from the steam generators. This results in the primary loop increasing in temperature. The higher temperature causes the density of the primary reactor coolant water to decrease, allowing higher neutron speeds, thus less fission and decreased power output. This decrease of power will eventually result in primary system temperature returning to its previous steady-state value. The operator can control the steady state operating temperature by addition of boric acid and/or movement of control rods. Reactivity adjustment to maintain 100% power as the fuel is burned up in most commercial PWRs is normally achieved by varying the concentration of boric acid dissolved in the primary reactor coolant. Boron readily absorbs neutrons and increasing or decreasing its concentration in the reactor coolant will therefore affect the neutron activity correspondingly. An entire control system involving high pressure pumps (usually called the charging and letdown system) is required to remove water from the high pressure primary loop and re-inject the water back in with differing concentrations of boric acid. The reactor control rods, inserted through the reactor vessel head directly into the fuel bundles, are moved for the following reasons: to start up the reactor, to shut down the primary nuclear reactions in the reactor, to accommodate short term transients, such as changes to load on the turbine, The control rods can also be used to compensate for nuclear poison inventory and to compensate for nuclear fuel depletion. However, these effects are more usually accommodated by altering the primary coolant boric acid concentration. In contrast,
BWR A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet graphite-moderated RBMK. It is the second most common type of electricity-generating nuc ...
s have no boron in the reactor coolant and control the reactor power by adjusting the reactor coolant flow rate.


Advantages

PWR reactors are very stable due to their tendency to produce less power as temperatures increase; this makes the reactor easier to operate from a stability standpoint. PWR turbine cycle loop is separate from the primary loop, so the water in the secondary loop is not contaminated by radioactive materials. PWRs can passively scram the reactor in case offsite power is lost to immediately stop the primary nuclear reaction. The control rods are held by electromagnets and fall by gravity when current is lost; full insertion safely shuts down the primary nuclear reaction. PWR technology is favoured by nations seeking to develop a nuclear navy; the compact reactors fit well in nuclear submarines and other nuclear ships. PWRs are the most deployed type of reactor globally, allowing for a wide range of suppliers of new plants and parts for existing plants. Due to long experience with their operation they are the closest thing to
mature technology A mature technology is a technology that has been in use for long enough that most of its initial faults and inherent problems have been removed or reduced by further development. In some contexts, it may also refer to technology that has not se ...
that exists in nuclear energy. PWRs - depending on type - can be fueled with
MOX-fuel Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alt ...
and/or the Russian Remix Fuel (which has a lower and a higher content than "regular" U/Pu MOX-fuel) allowing for a (partially) closed nuclear fuel cycle Water is a nontoxic, transparent, chemically unreactive (by comparison with e.g.
NaK In data networking, telecommunications, and computer buses, an acknowledgment (ACK) is a signal that is passed between communicating processes, computers, or devices to signify acknowledgment, or receipt of message, as part of a communications ...
) coolant that is liquid at room temperature which makes visual inspection and maintenance easier. It is also easy and cheap to obtain unlike heavy water or even nuclear graphite Compared to reactors operating on natural uranium, PWRs can achieve a relatively high burnup. A typical PWR will exchange a quarter to a third of its fuel load every 18-24 months and have maintenance and inspection, that requires the reactor to be shut down, scheduled for this window. While more uranium ore is consumed per unit of electricity produced than in a natural uranium fueled reactor, the amount of spent fuel is less with the balance being depleted uranium whose radiological danger is lower than that of natural uranium.


Disadvantages

The coolant water must be highly pressurized to remain liquid at high temperatures. This requires high strength piping and a heavy pressure vessel and hence increases construction costs. The higher pressure can increase the consequences of a
loss-of-coolant accident A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically ...
. The reactor pressure vessel is manufactured from ductile steel but, as the plant is operated, neutron flux from the reactor causes this steel to become less ductile. Eventually the
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile str ...
of the steel will reach limits determined by the applicable boiler and pressure vessel standards, and the pressure vessel must be repaired or replaced. This might not be practical or economic, and so determines the life of the plant. Additional high pressure components such as reactor coolant pumps, pressurizer, and steam generators are also needed. This also increases the capital cost and complexity of a PWR power plant. The high temperature water coolant with boric acid dissolved in it is corrosive to
carbon steel Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states: * no minimum content is specified or required for chromium, coba ...
(but not
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's r ...
); this can cause radioactive corrosion products to circulate in the primary coolant loop. This not only limits the lifetime of the reactor, but the systems that filter out the corrosion products and adjust the boric acid concentration add significantly to the overall cost of the reactor and to radiation exposure. In one instance, this has resulted in severe corrosion to control rod drive mechanisms when the boric acid solution leaked through the seal between the mechanism itself and the primary system. Due to the requirement to load a pressurized water reactor's primary coolant loop with boron, undesirable radioactive secondary
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of ...
production in the water is over 25 times greater than in boiling water reactors of similar power, owing to the latter's absence of the neutron moderating element in its coolant loop. The tritium is created by the absorption of a fast neutron in the nucleus of a boron-10 atom which subsequently splits into a lithium-7 and tritium atom. Pressurized water reactors annually emit several hundred curies of tritium to the environment as part of normal operation. Natural uranium is only 0.7% uranium-235, the isotope necessary for thermal reactors. This makes it necessary to enrich the uranium fuel, which significantly increases the costs of fuel production. Compared to reactors operating on natural uranium, less energy is generated per unit of uranium ore even though a higher burnup can be achieved.
Nuclear reprocessing Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, th ...
can "stretch" the fuel supply of both natural uranium and enriched uranium reactors but is virtually only practiced for light water reactors operating with lightly enriched fuel as spent fuel from e.g. CANDU reactors is very low in fissile material. Because water acts as a neutron moderator, it is not possible to build a
fast-neutron reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as oppose ...
with a PWR design. A reduced moderation water reactor may however achieve a breeding ratio greater than unity, though this reactor design has disadvantages of its own. Spent fuel from a PWR usually has a higher content of
fissile material In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
than natural uranium. Without
nuclear reprocessing Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, th ...
, this fissile material cannot be used as fuel in a PWR. It can, however, be used in a
CANDU The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. C ...
with only minimal reprocessing in a process called "DUPIC" - Direct Use of spent PWR fuel in CANDU.
Thermal efficiency In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc. For a ...
, while better than for boiling water reactors, cannot achieve the values of reactors with higher operating temperatures such as those cooled with high temperature gases, liquid metals or molten salts. Similarly process heat drawn from a PWR is not suitable for most industrial applications as those require temperatures in excess of .
Radiolysis Radiolysis is the dissociation of molecules by ionizing radiation. It is the cleavage of one or several chemical bonds resulting from exposure to high-energy flux. The radiation in this context is associated with ionizing radiation; radiolysis is ...
and certain accident scenarios which involve interactions between hot steam and zircalloy cladding can produce hydrogen from the cooling water leading to
hydrogen explosion Hydrogen safety covers the safe production, handling and use of hydrogen, particularly hydrogen gas fuel and liquid hydrogen. Hydrogen possesses the NFPA 704's highest rating of 4 on the flammability scale because it is flammable when mixed even ...
s as a potential accident scenario. During the Fukushima nuclear accident a hydrogen explosion damaging the containment building was a major concern. Some reactors contain catalytic recombiners which let the hydrogen react with ambient oxygen in a non-explosive fashion.


See also

* Boiling water reactor *
List of PWR reactors This is a list of all the commercial nuclear reactors in the world, sorted by country, with operational status. The list only includes civilian nuclear power reactors used to generate electricity for a power grid. All commercial nuclear reactor ...
*
Nuclear safety systems :''This article covers the technical aspects of active nuclear safety systems in the United States. For a general approach to nuclear safety, see nuclear safety.'' The three primary objectives of nuclear reactor safety systems as defined by the ...
* KEPCO Advanced Power Reactor 1400 (APR-1400) * Rosatom VVER-1200 (or AES-2006) * Areva EPR * Westinghouse Advanced Passive 1000 (AP1000) * Chinese Hualong One (or HPR1000) * Indian IPWR-900


Notes


References

* * * * * *


External links


Nuclear Science and Engineering
at
MIT OpenCourseWare MIT OpenCourseWare (MIT OCW) is an initiative of the Massachusetts Institute of Technology (MIT) to publish all of the educational materials from its undergraduate- and graduate-level courses online, freely and openly available to anyone, anyw ...
.
Document archives
at the website of the United States Nuclear Regulatory Commission.
Operating Principles of a Pressurized Water Reactor
(YouTube video).
Fuel Consumption of a Pressurized Water Reactor
{{DEFAULTSORT:Pressurized Water Reactor Light water reactors Nuclear power reactor types Articles containing video clips