HOME

TheInfoList



OR:

Polarimetry is the measurement and interpretation of the polarization of
transverse wave In physics, a transverse wave is a wave whose oscillations are perpendicular to the direction of the wave's advance. This is in contrast to a longitudinal wave which travels in the direction of its oscillations. Water waves are an example of t ...
s, most notably
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
s, such as
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmi ...
or light waves. Typically polarimetry is done on electromagnetic waves that have traveled through or have been reflected,
refracted In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomeno ...
or
diffracted Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
by some material in order to characterize that object. Plane polarized light: According to the wave theory of light, an ordinary ray of light is considered to be vibrating in all planes of right angles to the direction of its
propagation Propagation can refer to: * Chain propagation in a chemical reaction mechanism *Crack propagation, the growth of a crack during the fracture of materials * Propaganda, non-objective information used to further an agenda * Reproduction, and other fo ...
. If this ordinary ray of light is passed through a nicol prism, the emergent ray has its vibration only in one plane.


Applications

Polarimetry of thin films and surfaces is commonly known as
ellipsometry Ellipsometry is an optical technique for investigating the dielectric properties (complex refractive index or dielectric function) of thin films. Ellipsometry measures the change of polarization upon reflection or transmission and compares it t ...
. Polarimetry is used in
remote sensing Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Eart ...
applications, such as planetary science,
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
, and
weather radar Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type (rain, snow, hail etc.). Modern weather radars are mostly pulse- ...
. Polarimetry can also be included in computational analysis of waves. For example, radars often consider wave polarization in post-processing to improve the characterization of the targets. In this case, polarimetry can be used to estimate the fine texture of a material, help resolve the orientation of small structures in the target, and, when circularly-polarized antennas are used, resolve the number of bounces of the received signal (the chirality of circularly polarized waves alternates with each reflection).


Imaging

In 2003, a visible-near IR (VNIR) Spectropolarimetric Imager with an acousto-optic tunable filter (AOTF) was reported. These hyperspectral and spectropolarimetric imager functioned in radiation regions spanning from ultraviolet (UV) to long-wave infrared (LWIR). In AOTFs a
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word '' ...
transducer converts a radio frequency (RF) signal into an
ultrasonic Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies fr ...
wave. This wave then travels through a crystal attached to the transducer and upon entering an acoustic absorber is diffracted. The wavelength of the resulting light beams can be modified by altering the initial RF signal. VNIR and LWIR hyperspectral imaging consistently perform better as hyperspectral imagers. This technology was developed at the U.S. Army Research Laboratory. The researchers reported visible near infrared system (VISNIR) data (.4-.9 micrometers) which required an RF signal below 1 W power. The reported experimental data indicates that polarimetric signatures are unique to manmade items and are not found in natural objects. The researchers state that a dual system, collecting both hyperspectral and spectropolarimetric information, is an advantage in image production for target tracking.


Gemology

Gemologists use polariscopes to identify various properties of gems under examination. Proper examination may require the gem to be inspected in various positions and angles. A gemologist's polariscope is a vertically oriented device, usually with two polarizing lenses with one over the other with some space in between. A light source is built into the polariscope underneath the bottom polarizing lens and pointing upwards. A gemstone will be placed on top of the lower lens and may be properly examined by looking down at it through the top lens. To operate the polariscope, a gemologist may turn the polarizing lenses by hand to observe various characteristics about a gemstone. Polariscopes make use of their polarizing filters to reveal properties of a gem about how it affects light waves passing through it. A polariscope may be first used to determine the optic character of a gem and whether it is singly refracting (isotropic), anomalously doubly refracting (isotropic), doubly refracting (anisotropic), or aggregate. If the stone is doubly refracting and is not an aggregate, the polariscope may be used to further determine the optic figure of the gemstone, or whether it is uniaxial or biaxial. This step may require use of a
loupe A loupe ( ) is a simple, small magnification device used to see small details more closely. They generally have higher magnification than a magnifying glass, and are designed to be held or worn close to the eye. A loupe does not have an attached h ...
, also known as a conoscope. Finally, a polariscope can be used to detect the
pleochroism Pleochroism (from Greek πλέων, ''pléōn'', "more" and χρῶμα, ''khrôma'', "color") is an optical phenomenon in which a substance has different colors when observed at different angles, especially with polarized light. Backgrou ...
of a gemstone, although a
dichroscope A dichroscope is a pocket instrument used in the field of gemology, and can be used to test transparent gemstones (crystals). Experienced gemologists, observing the pleochroism of some gems, can successfully detect gemstones from other artificial ...
may be preferred for this purpose as it may show pleochroic colors side by side for easier identification.


Equipment

A polarimeter is the basic
scientific instrument A scientific instrument is a device or tool used for scientific purposes, including the study of both natural phenomena and theoretical research. History Historically, the definition of a scientific instrument has varied, based on usage, laws, an ...
used to make these measurements, although this term is rarely used to describe a polarimetry process performed by a computer, such as is done in polarimetric
synthetic aperture radar Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. SAR uses the motion of the radar antenna over a target region to provide fine ...
. Polarimetry can be used to measure various
optical properties The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics, a subfield of optics. The optical properties of matter include: *Refractive index * Dispersion *Transmittance a ...
of a material, including linear birefringence, circular birefringence (also known as optical rotation or optical rotary dispersion), linear dichroism, circular dichroism and scattering. To measure these various properties, there have been many designs of polarimeters, some archaic and some in current use. The most sensitive are based on interferometers, while more conventional polarimeters are based on arrangements of polarising filters,
wave plate A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the ''half-wave plate'', which shifts the polarization direction of linearly polarized ligh ...
s or other devices.


Astronomical polarimetry

Polarimetry is used in many areas of astronomy to study physical characteristics of sources including
active galactic nuclei An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not prod ...
and
blazars A blazar is an active galactic nucleus (AGN) with a Astrophysical jet, relativistic jet (a jet composed of Plasma (physics), ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of ...
,
exoplanets An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
, gas and
dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ho ...
in the interstellar medium, supernovae, gamma-ray bursts, stellar rotation, stellar magnetic fields,
debris disks Debris (, ) is rubble, wreckage, ruins, litter and discarded garbage/refuse/trash, scattered remains of something destroyed, or, as in geology, large rock fragments left by a melting glacier, etc. Depending on context, ''debris'' can refer to ...
, reflection in binary stars and the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
radiation. Astronomical polarimetry observations are carried out either as imaging polarimetry, where polarization is measured as a function of position in imaging data, or spectropolarimetry, where polarization is measured as a function of
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
of light, or broad-band aperture polarimetry.


Measuring optical rotation

Optically active samples, such as solutions of chiral molecules, often exhibit circular birefringence. Circular birefringence causes rotation of the polarization of plane polarized light as it passes through the sample. In ordinary light, the vibrations occur in all planes perpendicular to the direction of propagation. When light passes through a Nicol prism its vibrations in all directions except the direction of axis of the prism are cut off. The light emerging from the prism is said to be plane polarised because its vibration is in one direction. If two Nicol prisms are placed with their polarization planes parallel to each other, then the light rays emerging out of the first prism will enter the second prism. As a result, no loss of light is observed. However, if the second prism is rotated by an angle of 90°, the light emerging from the first prism is stopped by the second prism and no light emerges. The first prism is usually called the polarizer and the second prism is called the analyser. A simple polarimeter to measure this rotation consists of a long tube with flat
glass Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling ( quenching ...
ends, into which the sample is placed. At each end of the tube is a Nicol prism or other polarizer.
Light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
is shone through the tube, and the prism at the other end, attached to an eye-piece, is rotated to arrive at the region of complete brightness or that of half-dark, half-bright or that of complete darkness. The angle of rotation is then read from a scale. The same phenomenon is observed after an angle of 180°. The specific rotation of the sample may then be calculated. Temperature can affect the rotation of light, which should be accounted for in the calculations. alpha\lambda^T = 100\alpha/l\rho\,\! where: * sub>λT is the specific rotation. * T is the temperature. * λ is the wavelength of light. * α is the angle of rotation. * l is the distance the light travels through the sample, the path length. * \rho is the mass concentration of solution.


See also

*
Ellipsometry Ellipsometry is an optical technique for investigating the dielectric properties (complex refractive index or dielectric function) of thin films. Ellipsometry measures the change of polarization upon reflection or transmission and compares it t ...


References


External links


Polariscope – Gemstone Buzz
instrument to measure optical properties. * EU Project NanoCharMbr>nanocharm.org
{{Exoplanet Polarization (waves) Optical metrology