HOME

TheInfoList



OR:

Plant physiology is a subdiscipline of
botany Botany, also called , plant biology or phytology, is the science of plant life and a branch of biology. A botanist, plant scientist or phytologist is a scientist who specialises in this field. The term "botany" comes from the Ancient Greek w ...
concerned with the functioning, or
physiology Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemic ...
, of
plant Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae excl ...
s. Closely related fields include plant morphology (structure of plants), plant
ecology Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overl ...
(interactions with the environment), phytochemistry (
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
of plants), cell biology, genetics, biophysics and
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and phys ...
. Fundamental processes such as
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
, respiration,
plant nutrition Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element i ...
, plant hormone functions, tropisms,
nastic movements Nastic movements are non-directional responses to stimuli (e.g. temperature, humidity, light irradiance), and are usually associated with plants. The movement can be due to changes in turgor. Decrease in turgor pressure causes shrinkage while ...
, photoperiodism, photomorphogenesis, circadian rhythms,
environmental stress Stress, either physiological, biological or psychological, is an organism's response to a stressor such as an environmental condition. Stress is the body's method of reacting to a condition such as a threat, challenge or physical and psyc ...
physiology, seed germination, dormancy and stomata function and
transpiration Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth ...
, both parts of plant water relations, are studied by plant physiologists.


Aims

The field of plant physiology includes the study of all the internal activities of plants—those chemical and physical processes associated with
life Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energy ...
as they occur in plants. This includes study at many levels of scale of size and time. At the smallest scale are molecular interactions of
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
and internal
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical ...
of water, minerals, and nutrients. At the largest scale are the processes of plant development,
season A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's tilted orbit around the Sun. In temperate and ...
ality, dormancy, and reproductive control. Major subdisciplines of plant physiology include phytochemistry (the study of the
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
of plants) and phytopathology (the study of
disease A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
in plants). The scope of plant physiology as a discipline may be divided into several major areas of research. First, the study of phytochemistry (plant chemistry) is included within the domain of plant physiology. To function and survive, plants produce a wide array of chemical compounds not found in other organisms.
Photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
requires a large array of
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s,
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s, and other compounds to function. Because they cannot move, plants must also defend themselves chemically from herbivores,
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a g ...
s and competition from other plants. They do this by producing toxins and foul-tasting or smelling chemicals. Other compounds defend plants against disease, permit survival during drought, and prepare plants for dormancy, while other compounds are used to attract
pollinator A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains. Insects are the m ...
s or herbivores to spread ripe seeds. Secondly, plant physiology includes the study of biological and chemical processes of individual plant
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
. Plant cells have a number of features that distinguish them from cells of
animal Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage ...
s, and which lead to major differences in the way that plant life behaves and responds differently from animal life. For example, plant cells have a
cell wall A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering mec ...
which restricts the shape of plant cells and thereby limits the flexibility and mobility of plants. Plant cells also contain chlorophyll, a chemical compound that interacts with
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
in a way that enables plants to manufacture their own nutrients rather than consuming other living things as animals do. Thirdly, plant physiology deals with interactions between cells, tissues, and organs within a plant. Different cells and tissues are physically and chemically specialized to perform different functions.
Root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
s and rhizoids function to anchor the plant and acquire minerals in the soil. Leaves catch light in order to manufacture nutrients. For both of these organs to remain living, minerals that the roots acquire must be transported to the leaves, and the nutrients manufactured in the leaves must be transported to the roots. Plants have developed a number of ways to achieve this transport, such as vascular tissue, and the functioning of the various modes of transport is studied by plant physiologists. Fourthly, plant physiologists study the ways that plants control or regulate internal functions. Like animals, plants produce chemicals called hormones which are produced in one part of the plant to signal cells in another part of the plant to respond. Many
flowering plant Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (), commonly called angiosperms. The term "angiosperm" is derived from the Greek words ('container, vessel') and ('seed'), and refers to those plants t ...
s bloom at the appropriate time because of light-sensitive compounds that respond to the length of the night, a phenomenon known as photoperiodism. The ripening of
fruit In botany, a fruit is the seed-bearing structure in flowering plants that is formed from the ovary after flowering. Fruits are the means by which flowering plants (also known as angiosperms) disseminate their seeds. Edible fruits in partic ...
and loss of leaves in the winter are controlled in part by the production of the gas
ethylene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene ...
by the plant. Finally, plant physiology includes the study of plant response to environmental conditions and their variation, a field known as
environmental physiology Ecophysiology (from Greek , ''oikos'', "house(hold)"; , ''physis'', "nature, origin"; and , ''-logia''), environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to envi ...
. Stress from water loss, changes in air chemistry, or crowding by other plants can lead to changes in the way a plant functions. These changes may be affected by genetic, chemical, and physical factors.


Biochemistry of plants

The
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
s of which plants are constructed—principally
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
,
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
,
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
,
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ea ...
,
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
, etc.—are the same as for all other life forms: animals, fungi,
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
and even
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es. Only the details of their individual molecular structures vary. Despite this underlying similarity, plants produce a vast array of chemical compounds with unique properties which they use to cope with their environment.
Pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s are used by plants to absorb or detect light, and are extracted by humans for use in
dye A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution and ...
s. Other plant products may be used for the manufacture of commercially important
rubber Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds. Thailand, Malaysia, and ...
or biofuel. Perhaps the most celebrated compounds from plants are those with pharmacological activity, such as salicylic acid from which
aspirin Aspirin, also known as acetylsalicylic acid (ASA), is a nonsteroidal anti-inflammatory drug (NSAID) used to reduce pain, fever, and/or inflammation, and as an antithrombotic. Specific inflammatory conditions which aspirin is used to treat inc ...
is made,
morphine Morphine is a strong opiate that is found naturally in opium, a dark brown resin in poppies ('' Papaver somniferum''). It is mainly used as a pain medication, and is also commonly used recreationally, or to make other illicit opioids. T ...
, and digoxin. Drug companies spend billions of dollars each year researching plant compounds for potential medicinal benefits.


Constituent elements

Plants require some nutrients, such as
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
and
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, in large quantities to survive. Some nutrients are termed macronutrients, where the prefix ''macro-'' (large) refers to the quantity needed, not the size of the nutrient particles themselves. Other nutrients, called
micronutrient Micronutrients are essential dietary elements required by organisms in varying quantities throughout life to orchestrate a range of physiological functions to maintain health. Micronutrient requirements differ between organisms; for example, huma ...
s, are required only in trace amounts for plants to remain healthy. Such micronutrients are usually absorbed as ions dissolved in water taken from the soil, though carnivorous plants acquire some of their micronutrients from captured prey. The following tables list element nutrients essential to plants. Uses within plants are generalized.


Pigments

Among the most important molecules for plant function are the
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s. Plant pigments include a variety of different kinds of molecules, including porphyrins, carotenoids, and
anthocyanin Anthocyanins (), also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart gave the name Anthokyan to a chemical com ...
s. All biological pigments selectively absorb certain
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s of
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
while reflecting others. The light that is absorbed may be used by the plant to power
chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking ...
s, while the reflected wavelengths of light determine the
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
the pigment appears to the eye. Chlorophyll is the primary pigment in plants; it is a porphyrin that absorbs red and blue wavelengths of light while reflecting
green Green is the color between cyan and yellow on the visible spectrum. It is evoked by light which has a dominant wavelength of roughly 495570 nm. In subtractive color systems, used in painting and color printing, it is created by a combin ...
. It is the presence and relative abundance of chlorophyll that gives plants their green color. All land plants and
green alga The green algae (singular: green alga) are a group consisting of the Prasinodermophyta and its unnamed sister which contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as ...
e possess two forms of this pigment: chlorophyll ''a'' and chlorophyll ''b''. Kelps, diatoms, and other photosynthetic heterokonts contain chlorophyll ''c'' instead of ''b'',
red algae Red algae, or Rhodophyta (, ; ), are one of the oldest groups of eukaryotic algae. The Rhodophyta also comprises one of the largest phyla of algae, containing over 7,000 currently recognized species with taxonomic revisions ongoing. The majority ...
possess chlorophyll ''a''. All chlorophylls serve as the primary means plants use to intercept light to fuel
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
. Carotenoids are red, orange, or yellow
tetraterpenoid Tetraterpenes are terpenes consisting of eight isoprene units and have the molecular formula C40H64. Tetraterpenoids (including many carotenoids) are tetraterpenes that have been chemically modified, as indicated by the presence of oxygen-contain ...
s. They function as accessory pigments in plants, helping to fuel
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
by gathering wavelengths of light not readily absorbed by chlorophyll. The most familiar carotenoids are carotene (an orange pigment found in
carrot The carrot ('' Daucus carota'' subsp. ''sativus'') is a root vegetable, typically orange in color, though purple, black, red, white, and yellow cultivars exist, all of which are domesticated forms of the wild carrot, ''Daucus carota'', na ...
s),
lutein Lutein (;"Lutein"
(a yellow pigment found in fruits and vegetables), and lycopene (the red pigment responsible for the color of
tomato The tomato is the edible berry of the plant ''Solanum lycopersicum'', commonly known as the tomato plant. The species originated in western South America, Mexico, and Central America. The Mexican Nahuatl word gave rise to the Spanish word ...
es). Carotenoids have been shown to act as
antioxidant Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. This can lead to polymerization and other chain reactions. They are frequently added to industrial products, such as fuels and lubrica ...
s and to promote healthy eyesight in humans.
Anthocyanin Anthocyanins (), also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart gave the name Anthokyan to a chemical com ...
s (literally "flower blue") are
water-soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solub ...
flavonoid pigments that appear red to blue, according to pH. They occur in all tissues of higher plants, providing color in leaves, stems,
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
s,
flower A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Angiospermae). The biological function of a flower is to facilitate reproduction, usually by providing a mechanis ...
s, and
fruit In botany, a fruit is the seed-bearing structure in flowering plants that is formed from the ovary after flowering. Fruits are the means by which flowering plants (also known as angiosperms) disseminate their seeds. Edible fruits in partic ...
s, though not always in sufficient quantities to be noticeable. Anthocyanins are most visible in the petals of flowers, where they may make up as much as 30% of the dry weight of the tissue. They are also responsible for the purple color seen on the underside of tropical shade plants such as '' Tradescantia zebrina''. In these plants, the anthocyanin catches light that has passed through the leaf and reflects it back towards regions bearing chlorophyll, in order to maximize the use of available light Betalains are red or yellow pigments. Like anthocyanins they are water-soluble, but unlike anthocyanins they are indole-derived compounds synthesized from
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the G ...
. This class of pigments is found only in the Caryophyllales (including
cactus A cactus (, or less commonly, cactus) is a member of the plant family Cactaceae, a family comprising about 127 genera with some 1750 known species of the order Caryophyllales. The word ''cactus'' derives, through Latin, from the Ancient Gree ...
and amaranth), and never co-occur in plants with anthocyanins. Betalains are responsible for the deep red color of beets, and are used commercially as food-coloring agents. Plant physiologists are uncertain of the function that betalains have in plants which possess them, but there is some preliminary evidence that they may have fungicidal properties.


Signals and regulators

Plants produce hormones and other growth regulators which act to signal a physiological response in their tissues. They also produce compounds such as phytochrome that are sensitive to light and which serve to trigger growth or development in response to environmental signals.


Plant hormones

Plant hormones, known as plant growth regulators (PGRs) or phytohormones, are chemicals that regulate a plant's growth. According to a standard animal definition,
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
s are signal molecules produced at specific locations, that occur in very low concentrations, and cause altered processes in target cells at other locations. Unlike animals, plants lack specific hormone-producing tissues or organs. Plant hormones are often not transported to other parts of the plant and production is not limited to specific locations. Plant hormones are chemicals that in small amounts promote and influence the
growth Growth may refer to: Biology * Auxology, the study of all aspects of human physical growth * Bacterial growth * Cell growth * Growth hormone, a peptide hormone that stimulates growth * Human development (biology) * Plant growth * Secondary grow ...
, development and differentiation of cells and tissues. Hormones are vital to plant growth; affecting processes in plants from flowering to
seed A seed is an embryonic plant enclosed in a protective outer covering, along with a food reserve. The formation of the seed is a part of the process of reproduction in seed plants, the spermatophytes, including the gymnosperm and angiosper ...
development, dormancy, and germination. They regulate which tissues grow upwards and which grow downwards, leaf formation and stem growth, fruit development and ripening, as well as leaf abscission and even plant death. The most important plant hormones are abscissic acid (ABA), auxins,
ethylene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene ...
, gibberellins, and
cytokinin Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and lea ...
s, though there are many other substances that serve to regulate plant physiology.


Photomorphogenesis

While most people know that
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
is important for photosynthesis in plants, few realize that plant sensitivity to light plays a role in the control of plant structural development ( morphogenesis). The use of light to control structural development is called photomorphogenesis, and is dependent upon the presence of specialized photoreceptors, which are chemical
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s capable of absorbing specific
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s of light. Plants use four kinds of photoreceptors: phytochrome, cryptochrome, a UV-B photoreceptor, and protochlorophyllide ''a''. The first two of these, phytochrome and cryptochrome, are
photoreceptor protein Photoreceptor proteins are light-sensitive proteins involved in the sensing and response to light in a variety of organisms. Some examples are rhodopsin in the photoreceptor cells of the vertebrate retina, phytochrome in plants, and bacteriorhod ...
s, complex molecular structures formed by joining a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
with a light-sensitive pigment. Cryptochrome is also known as the UV-A photoreceptor, because it absorbs
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
light in the long wave "A" region. The UV-B receptor is one or more compounds not yet identified with certainty, though some evidence suggests carotene or riboflavin as candidates. Protochlorophyllide ''a'', as its name suggests, is a chemical precursor of chlorophyll. The most studied of the photoreceptors in plants is phytochrome. It is sensitive to light in the red and far-red region of the
visible spectrum The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called '' visible light'' or simply light. A typical human eye will respond to ...
. Many flowering plants use it to regulate the time of
flower A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Angiospermae). The biological function of a flower is to facilitate reproduction, usually by providing a mechanis ...
ing based on the length of day and night ( photoperiodism) and to set circadian rhythms. It also regulates other responses including the germination of seeds, elongation of seedlings, the size, shape and number of leaves, the synthesis of chlorophyll, and the straightening of the
epicotyl An epicotyl is important for the beginning stages of a plant's life. It is the region of a seedling stem above the stalks of the seed leaves of an embryo plant. It grows rapidly, showing hypogeal germination, and extends the stem above the soil surf ...
or
hypocotyl The hypocotyl (short for "hypocotyledonous stem", meaning "below seed leaf") is the stem of a germinating seedling, found below the cotyledons (seed leaves) and above the radicle ( root). Eudicots As the plant embryo grows at germination, it ...
hook of
dicot The dicotyledons, also known as dicots (or, more rarely, dicotyls), are one of the two groups into which all the flowering plants (angiosperms) were formerly divided. The name refers to one of the typical characteristics of the group: namely, ...
seedlings.


Photoperiodism

Many
flowering plant Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (), commonly called angiosperms. The term "angiosperm" is derived from the Greek words ('container, vessel') and ('seed'), and refers to those plants t ...
s use the pigment phytochrome to sense seasonal changes in day length, which they take as signals to flower. This sensitivity to day length is termed photoperiodism. Broadly speaking, flowering plants can be classified as long day plants, short day plants, or day neutral plants, depending on their particular response to changes in day length. Long day plants require a certain minimum length of daylight to starts flowering, so these plants flower in the spring or summer. Conversely, short day plants flower when the length of daylight falls below a certain critical level. Day neutral plants do not initiate flowering based on photoperiodism, though some may use temperature sensitivity (
vernalization Vernalization (from Latin ''vernus'', "of the spring") is the induction of a plant's flowering process by exposure to the prolonged cold of winter, or by an artificial equivalent. After vernalization, plants have acquired the ability to flower ...
) instead. Although a short day plant cannot flower during the long days of summer, it is not actually the period of light exposure that limits flowering. Rather, a short day plant requires a minimal length of uninterrupted darkness in each 24-hour period (a short daylength) before floral development can begin. It has been determined experimentally that a short day plant (long night) does not flower if a flash of phytochrome activating light is used on the plant during the night. Plants make use of the phytochrome system to sense day length or photoperiod. This fact is utilized by
florist Floristry is the production, commerce, and trade in flowers. It encompasses flower care and handling, floral design and arrangement, merchandising, production, display and flower delivery. Wholesale florists sell bulk flowers and related su ...
s and greenhouse gardeners to control and even induce flowering out of season, such as the '' Poinsettia''.


Environmental physiology

Paradoxically, the subdiscipline of environmental physiology is on the one hand a recent field of study in plant ecology and on the other hand one of the oldest. Environmental physiology is the preferred name of the subdiscipline among plant physiologists, but it goes by a number of other names in the applied sciences. It is roughly synonymous with ecophysiology, crop ecology,
horticulture Horticulture is the branch of agriculture that deals with the art, science, technology, and business of plant cultivation. It includes the cultivation of fruits, vegetables, nuts, seeds, herbs, sprouts, mushrooms, algae, flowers, seaweeds and no ...
and
agronomy Agronomy is the science and technology of producing and using plants by agriculture for food, fuel, fiber, chemicals, recreation, or land conservation. Agronomy has come to include research of plant genetics, plant physiology, meteorology, and ...
. The particular name applied to the subdiscipline is specific to the viewpoint and goals of research. Whatever name is applied, it deals with the ways in which plants respond to their environment and so overlaps with the field of
ecology Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overl ...
. Environmental physiologists examine plant response to physical factors such as
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
(including
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
and
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
radiation),
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
,
fire Fire is the rapid oxidation of a material (the fuel) in the exothermic chemical process of combustion, releasing heat, light, and various reaction products. At a certain point in the combustion reaction, called the ignition point, flames ...
, and
wind Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few ...
. Of particular importance are
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
relations (which can be measured with the Pressure bomb) and the stress of
drought A drought is defined as drier than normal conditions.Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T.Y. Gan, J. Gergis, D.  Jiang, A.  Khan, W.  Pokam Mba, D.  Rosenfeld, J. Tierney, an ...
or inundation, exchange of gases with the atmosphere, as well as the cycling of nutrients such as
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
and
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
. Environmental physiologists also examine plant response to biological factors. This includes not only negative interactions, such as
competition Competition is a rivalry where two or more parties strive for a common goal which cannot be shared: where one's gain is the other's loss (an example of which is a zero-sum game). Competition can arise between entities such as organisms, ind ...
, herbivory,
disease A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
and
parasitism Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson ha ...
, but also positive interactions, such as mutualism and
pollination Pollination is the transfer of pollen from an Stamen, anther of a plant to the stigma (botany), stigma of a plant, later enabling fertilisation and the production of seeds, most often by an animal or by Anemophily, wind. Pollinating agents can ...
.


Tropisms and nastic movements

Plants may respond both to directional and non-directional stimuli. A response to a directional stimulus, such as
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
or sun light, is called a tropism. A response to a nondirectional stimulus, such as
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
or
humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present. Humidity dep ...
, is a nastic movement. Tropisms in plants are the result of differential cell growth, in which the cells on one side of the plant elongates more than those on the other side, causing the part to bend toward the side with less growth. Among the common tropisms seen in plants is
phototropism Phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hor ...
, the bending of the plant toward a source of light. Phototropism allows the plant to maximize light exposure in plants which require additional light for photosynthesis, or to minimize it in plants subjected to intense light and heat.
Geotropism Gravitropism (also known as geotropism) is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general fe ...
allows the roots of a plant to determine the direction of gravity and grow downwards. Tropisms generally result from an interaction between the environment and production of one or more plant hormones.
Nastic movement Nastic movements are non-directional responses to stimuli (e.g. temperature, humidity, light irradiance), and are usually associated with plants. The movement can be due to changes in turgor. Decrease in turgor pressure causes shrinkage while ...
s results from differential cell growth (e.g. epinasty and hiponasty), or from changes in turgor pressure within plant tissues (e.g., nyctinasty), which may occur rapidly. A familiar example is thigmonasty (response to touch) in the Venus fly trap, a carnivorous plant. The traps consist of modified leaf blades which bear sensitive trigger hairs. When the hairs are touched by an insect or other animal, the leaf folds shut. This mechanism allows the plant to trap and digest small insects for additional nutrients. Although the trap is rapidly shut by changes in internal cell pressures, the leaf must grow slowly to reset for a second opportunity to trap insects.


Plant disease

Economically, one of the most important areas of research in environmental physiology is that of phytopathology, the study of
disease A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
s in plants and the manner in which plants resist or cope with infection. Plant are susceptible to the same kinds of disease organisms as animals, including
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es,
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
, and
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
, as well as physical invasion by
insect Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body ( head, thorax and abdomen), three pa ...
s and roundworms. Because the biology of plants differs with animals, their symptoms and responses are quite different. In some cases, a plant can simply shed infected leaves or flowers to prevent the spread of disease, in a process called abscission. Most animals do not have this option as a means of controlling disease. Plant diseases organisms themselves also differ from those causing disease in animals because plants cannot usually spread infection through casual physical contact. Plant
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a g ...
s tend to spread via
spore In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, ...
s or are carried by animal vectors. One of the most important advances in the control of plant disease was the discovery of
Bordeaux mixture Bordeaux mixture (also called ''Bordo Mix'') is a mixture of copper(II) sulphate (CuSO4) and quicklime ( Ca O) used as a fungicide. It is used in vineyards, fruit-farms and gardens to prevent infestations of downy mildew, powdery mildew and othe ...
in the nineteenth century. The mixture is the first known fungicide and is a combination of
copper sulfate Copper sulfate may refer to: * Copper(II) sulfate, CuSO4, a common compound used as a fungicide and herbicide * Copper(I) sulfate Copper(I) sulfate, also known as cuprous sulfate, is an inorganic compound with the chemical formula Cu2 SO4. It ...
and lime. Application of the mixture served to inhibit the growth of downy mildew that threatened to seriously damage the
French French (french: français(e), link=no) may refer to: * Something of, from, or related to France ** French language, which originated in France, and its various dialects and accents ** French people, a nation and ethnic group identified with Franc ...
wine Wine is an alcoholic drink typically made from Fermentation in winemaking, fermented grapes. Yeast in winemaking, Yeast consumes the sugar in the grapes and converts it to ethanol and carbon dioxide, releasing heat in the process. Different ...
industry.


History


Early history

Francis Bacon Francis Bacon, 1st Viscount St Alban (; 22 January 1561 – 9 April 1626), also known as Lord Verulam, was an English philosopher and statesman who served as Attorney General and Lord Chancellor of England. Bacon led the advancement of both ...
published one of the first plant physiology experiments in 1627 in the book, ''Sylva Sylvarum.'' Bacon grew several terrestrial plants, including a rose, in water and concluded that soil was only needed to keep the plant upright. Jan Baptist van Helmont published what is considered the first quantitative experiment in plant physiology in 1648. He grew a willow tree for five years in a pot containing 200 pounds of oven-dry soil. The soil lost just two ounces of dry weight and van Helmont concluded that plants get all their weight from water, not soil. In 1699,
John Woodward John Woodward or ''variant'', may refer to: Sports * John Woodward (English footballer) (born 1947), former footballer * John Woodward (Scottish footballer) (born 1949), former footballer * Johnny Woodward (1924–2002), English footballer * Jo ...
published experiments on growth of spearmint in different sources of water. He found that plants grew much better in water with soil added than in distilled water. Stephen Hales is considered the Father of Plant Physiology for the many experiments in the 1727 book, ''Vegetable Staticks''; though
Julius von Sachs Julius von Sachs (; 2 October 1832 – 29 May 1897) was a German botanist from Breslau, Prussian Silesia. He is considered the founder of experimental plant physiology and co-founder of modern water culture. Julius von Sachs and Wilhelm Knop a ...
unified the pieces of plant physiology and put them together as a discipline. His ''Lehrbuch der Botanik'' was the plant physiology bible of its time. Researchers discovered in the 1800s that plants absorb essential mineral nutrients as inorganic ions in water. In natural conditions, soil acts as a mineral nutrient reservoir but the soil itself is not essential to plant growth. When the mineral nutrients in the soil are dissolved in water, plant roots absorb nutrients readily, soil is no longer required for the plant to thrive. This observation is the basis for hydroponics, the growing of plants in a water solution rather than soil, which has become a standard technique in biological research, teaching lab exercises, crop production and as a hobby.


Economic applications


Food production

In
horticulture Horticulture is the branch of agriculture that deals with the art, science, technology, and business of plant cultivation. It includes the cultivation of fruits, vegetables, nuts, seeds, herbs, sprouts, mushrooms, algae, flowers, seaweeds and no ...
and
agriculture Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people ...
along with food science, plant physiology is an important topic relating to
fruit In botany, a fruit is the seed-bearing structure in flowering plants that is formed from the ovary after flowering. Fruits are the means by which flowering plants (also known as angiosperms) disseminate their seeds. Edible fruits in partic ...
s, vegetables, and other consumable parts of plants. Topics studied include: ''climatic'' requirements, fruit drop, nutrition, ripening, fruit set. The production of food crops also hinges on the study of plant physiology covering such topics as optimal planting and harvesting times and post harvest storage of plant products for human consumption and the production of secondary products like drugs and cosmetics. Crop physiology steps back and looks at a field of plants as a whole, rather than looking at each plant individually. Crop physiology looks at how plants respond to each other and how to maximize results like food production through determining things like optimal planting density.


See also

* Biomechanics *
Hyperaccumulator A hyperaccumulator is a plant capable of growing in soil or water with very high concentrations of metals, absorbing these metals through their roots, and concentrating extremely high levels of metals in their tissues. The metals are concentrated a ...
* Phytochemistry *
Plant anatomy Plant anatomy or phytotomy is the general term for the study of the internal structure of plants. Originally it included plant morphology, the description of the physical form and external structure of plants, but since the mid-20th century plan ...
* Plant morphology *
Plant secondary metabolism Secondary metabolism produces a large number of specialized compounds (estimated 200,000) that do not aid in the growth and development of plants but are required for the plant to survive in its environment. Secondary metabolism is connected to ...
* Branches of botany


References


Further reading

* * * * Lincoln Taiz, Eduardo Zeiger, Ian Max Møller, Angus Murphy: ''Fundamentals of Plant Physiology''. Sinauer, 2018. {{DEFAULTSORT:Plant Physiology Branches of botany