Planetary Habitability Index
   HOME

TheInfoList



OR:

Planetary habitability is the measure of a
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
's or a
natural satellite A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are often colloquially referred to as ''moons'' ...
's potential to develop and maintain environments hospitable to
life Life is a quality that distinguishes matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes, from that which does not, and is defined by the capacity for Cell growth, growth, reaction to Stimu ...
. Life may be generated directly on a planet or satellite endogenously or be transferred to it from another body, through a hypothetical process known as
panspermia Panspermia () is the hypothesis, first proposed in the 5th century BCE by the Greek philosopher Anaxagoras, that life exists throughout the Universe, distributed by space dust, meteoroids, asteroids, comets, and planetoids, as well as by spacec ...
. Environments do not need to contain life to be considered habitable nor are accepted
habitable zone In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure.J. F. Kast ...
s (HZ) the only areas in which life might arise. As the existence of life beyond Earth is unknown, planetary habitability is largely an
extrapolation In mathematics, extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable. It is similar to interpolation, which produces estimates between know ...
of conditions on Earth and the characteristics of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
and
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
which appear favorable to life's flourishing. Of particular interest are those factors that have sustained complex,
multicellular A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially un ...
organisms on Earth and not just simpler,
unicellular A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and ...
creatures. Research and theory in this regard is a component of a number of natural sciences, such as
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
, planetary science and the emerging discipline of astrobiology. An absolute requirement for life is an
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
source, and the notion of planetary habitability implies that many other
geophysical Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' some ...
, geochemical, and
astrophysical Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
criteria must be met before an astronomical body can support life. In its astrobiology roadmap,
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the US federal government responsible for the civil List of government space agencies, space program ...
has defined the principal habitability criteria as "extended regions of liquid water, conditions favorable for the assembly of complex organic molecules, and energy sources to sustain
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
". In August 2018, researchers reported that water worlds could support life. Habitability indicators and biosignatures must be interpreted within a planetary and environmental context. In determining the habitability potential of a body, studies focus on its bulk composition,
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
al properties, atmosphere, and potential chemical interactions. Stellar characteristics of importance include
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
and luminosity, stable variability, and high metallicity. Rocky, wet
terrestrial Terrestrial refers to things related to land or the planet Earth. Terrestrial may also refer to: * Terrestrial animal, an animal that lives on land opposed to living in water, or sometimes an animal that lives on or near the ground, as opposed to ...
-type planets and moons with the potential for Earth-like chemistry are a primary focus of astrobiological research, although more speculative habitability theories occasionally examine alternative biochemistries and other types of astronomical bodies. The idea that planets beyond Earth might host life is an ancient one, though historically it was framed by philosophy as much as
physical science Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together called the "physical sciences". Definition Phy ...
.This article is an analysis of planetary habitability from the perspective of contemporary physical science. A historical viewpoint on the possibility of habitable planets can be found at Beliefs in extraterrestrial life and
Cosmic pluralism Cosmic pluralism, the plurality of worlds, or simply pluralism, describes the belief in numerous "worlds" (planets, dwarf planets or natural satellites) in addition to Earth (possibly an infinite number), which may harbour extraterrestrial life ...
. For a discussion of the probability of alien life see the
Drake equation The Drake equation is a probabilistic argument used to estimate the number of active, communicative extraterrestrial civilizations in the Milky Way Galaxy. The equation was formulated in 1961 by Frank Drake, not for purposes of quantifying ...
and
Fermi paradox The Fermi paradox is the discrepancy between the lack of conclusive evidence of advanced extraterrestrial life and the apparently high a priori likelihood of its existence, and by extension of obtaining such evidence. As a 2015 article put it, ...
. Habitable planets are also a staple of fiction; see
Planets in science fiction Planets in science fiction are fictional planets that appear in various media of the science fiction genre as story-settings or depicted locations. Planet lists For planets from specific fictional milieux, use the following lists: Literature ...
.
The late 20th century saw two breakthroughs in the field. The observation and robotic spacecraft
exploration Exploration refers to the historical practice of discovering remote lands. It is studied by geographers and historians. Two major eras of exploration occurred in human history: one of convergence, and one of divergence. The first, covering most ...
of other planets and moons within the Solar System has provided critical information on defining habitability criteria and allowed for substantial geophysical comparisons between the Earth and other bodies. The discovery of exoplanets, beginning in the early 1990s and accelerating thereafter, has provided further information for the study of possible extraterrestrial life. These findings confirm that the Sun is not unique among stars in hosting planets and expands the habitability research horizon beyond the Solar System.


History


Earth habitability comparison

The chemistry of life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the
Universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
was only 10–17 million years old. According to the
panspermia Panspermia () is the hypothesis, first proposed in the 5th century BCE by the Greek philosopher Anaxagoras, that life exists throughout the Universe, distributed by space dust, meteoroids, asteroids, comets, and planetoids, as well as by spacec ...
hypothesis, microscopic life—distributed by
meteoroids A meteoroid () is a small rocky or metallic body in outer space. Meteoroids are defined as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than this are classified as mic ...
, asteroids and other
small Solar System bodies A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, ...
—may exist throughout the Universe. Nonetheless, Earth is the only place in the Universe known to harbor life. Estimates of
habitable zone In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure.J. F. Kast ...
s around other stars, along with the discovery of thousands of exoplanets and new insights into the extreme habitats on Earth where organisms known as
extremophile An extremophile (from Latin ' meaning "extreme" and Greek ' () meaning "love") is an organism that is able to live (or in some cases thrive) in extreme environments, i.e. environments that make survival challenging such as due to extreme temper ...
s live, suggest that there may be many more habitable places in the Universe than considered possible until very recently. On 4 November 2013, astronomers reported, based on ''Kepler'' space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the
habitable zone In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure.J. F. Kast ...
s of Sun-like stars and red dwarfs within the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
. 11 billion of these estimated planets may be orbiting Sun-like stars. The nearest such planet may be 12 light-years away, according to the scientists. As of June 2021, a total of 59 potentially habitable exoplanets have been found. In August 2021, a new class of habitable planets, named
ocean planet An ocean world, ocean planet, panthalassic planet, maritime world, water world or aquaplanet, is a type of planet that contains a substantial amount of water in form of oceans, either beneath the surface, as  subsurface oceans, or on the surf ...
s, which involves "hot, ocean-covered planets with hydrogen-rich atmospheres", has been reported. Hycean planets may soon be studied for biosignatures by terrestrial telescopes as well as
space telescope A space telescope or space observatory is a telescope in outer space used to observe astronomical objects. Suggested by Lyman Spitzer in 1946, the first operational telescopes were the American Orbiting Astronomical Observatory, OAO-2 launch ...
s, such as the James Webb Space Telescope (JWST), which was launched on 25 December 2021.


Suitable star systems

An understanding of planetary habitability begins with the host star. The classical habitable zone (HZ) is defined for surface conditions only; but a metabolism that does not depend on the stellar light can still exist outside the HZ, thriving in the interior of the planet where liquid water is available. Under the auspices of
SETI The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life, for example, monitoring electromagnetic radiation for signs of transmissions from civilizations on other pl ...
's Project Phoenix, scientists
Margaret Turnbull Margaret Carol "Maggie" Turnbull (born 1975) is an American astronomer and astrobiologist. She received her PhD in Astronomy from the University of Arizona in 2004. Turnbull is an authority on star systems which may have habitable planets, so ...
and Jill Tarter developed the " HabCat" (or Catalogue of Habitable Stellar Systems) in 2002. The catalogue was formed by winnowing the nearly 120,000 stars of the larger
Hipparcos Catalogue ''Hipparcos'' was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial ...
into a core group of 17,000 potentially habitable stars, and the selection criteria that were used provide a good starting point for understanding which astrophysical factors are necessary to habitable planets. Habitability criteria defined—the foundational source for this article. According to research published in August 2015, very large galaxies may be more favorable to the formation and development of habitable planets than smaller galaxies, like the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galaxy. However, what makes a planet habitable is a much more complex question than having a planet located at the right distance from its host star so that water can be liquid on its surface: various
geophysical Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' some ...
and
geodynamical Geodynamics is a subfield of geophysics dealing with dynamics of the Earth. It applies physics, chemistry and mathematics to the understanding of how mantle convection leads to plate tectonics and geologic phenomena such as seafloor spreading, mo ...
aspects, the radiation, and the host star's plasma environment can influence the evolution of planets and life, if it originated. Liquid water is a necessary but not sufficient condition for life as we know it, as habitability is a function of a multitude of environmental parameters


Spectral class

The
spectral class In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the ...
of a star indicates its photospheric temperature, which (for main-sequence stars) correlates to overall mass. The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K". This corresponds to temperatures of a little more than 7,000  K down to a little less than 4,000 K (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. This spectral range probably accounts for between 5% and 10% of stars in the local
Milky Way galaxy The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
. "Middle-class" stars of this sort have a number of characteristics considered important to planetary habitability: * They live at least a few hundred million years, allowing life a chance to evolve. More luminous main-sequence stars of the "O" classes and many members of the "B" classes usually live less than 500 million years and in exceptional cases less than 10 million.Life appears to have emerged on Earth approximately 500 million years after the planet's formation. "A" class stars (which shine for between 600 million and 1.2 billion years) and a small fraction of "B" class stars (which shine 10+ million to 600 million) fall within this window. At least theoretically life could emerge in such systems but it would almost certainly not reach a sophisticated level given these time-frames and the fact that increases in luminosity would occur quite rapidly. Life around "O" class stars is exceptionally unlikely, as they shine for less than ten million years. * They emit enough high-frequency
ultraviolet radiation Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
to trigger important atmospheric dynamics such as
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
formation, but not so much that
ionisation Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecu ...
destroys incipient life. * They emit sufficient radiation at wavelengths conducive to photosynthesis. * Liquid water may exist on the surface of planets orbiting them at a distance that does not induce
tidal locking Tidal locking between a pair of co-orbiting astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where a tidally locked ...
. K-type stars may be able to support life far longer than the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. Whether fainter late K and M class red dwarf stars are also suitable hosts for habitable planets is perhaps the most important open question in the entire field of planetary habitability given their prevalence (
habitability of red dwarf systems The habitability of red dwarf systems is presumed to be determined by a large number of factors from a variety of sources. Modern evidence indicates that planets in red dwarf systems are unlikely to be habitable, due to their low stellar flux, ...
).
Gliese 581 c Gliese 581c (Gl 581c or GJ 581c) is a planet orbiting within the Gliese 581 system. It is the second planet discovered in the system and the third in order from the star. With a mass at least 5.5 times that of the Earth, it is classified as a ...
, a "
super-Earth A super-Earth is an extrasolar planet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to ...
", has been found orbiting in the "
habitable zone In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure.J. F. Kast ...
" (HZ) of a red dwarf and may possess liquid water. However it is also possible that a greenhouse effect may render it too hot to support life, while its neighbor,
Gliese 581 d Gliese 581d (often shortened to Gl 581d or GJ 581d) is a proposed extrasolar planet orbiting within the Gliese 581 system, approximately 20.4 light-years away in the Libra constellation. It is the third planet claimed in the system and (assu ...
, may be a more likely candidate for habitability. In September 2010, the discovery was announced of another planet,
Gliese 581 g Gliese 581g , unofficially known as Zarmina (or Zarmina's World), was a candidate exoplanet postulated to orbit within the Gliese 581 system, twenty light-years from Earth. It was discovered by the Lick–Carnegie Exoplanet Survey, and was the si ...
, in an orbit between these two planets. However, reviews of the discovery have placed the existence of this planet in doubt, and it is listed as "unconfirmed". In September 2012, the discovery of two planets orbiting
Gliese 163 Gliese 163 is a faint red dwarf star with multiple exoplanetary companions in the southern constellation of Dorado. Other stellar catalog names for it include HIP 19394 and LHS 188. It is too faint to be visible to the naked eye, havin ...
was announced. One of the planets,
Gliese 163 c Gliese 163 c () or Gl 163 c is a potentially habitable exoplanet, orbiting within the habitable zone of M dwarf star Gliese 163. The parent star is 15.0 parsecs (approximately 49 light-years, or 465 trillion kilometers) from the Sun, in the c ...
, about 6.9 times the mass of Earth and somewhat hotter, was considered to be within the habitable zone. A recent study suggests that cooler stars that emit more light in the infrared and near infrared may actually host warmer planets with less ice and incidence of snowball states. These wavelengths are absorbed by their planets' ice and greenhouse gases and remain warmer. A 2020 study found that about half of Sun-like stars could host rocky, potentially habitable planets. Specifically, they estimated with that, on average, the nearest habitable zone planet around G and K-type stars is about 6 parsecs away, and there are about 4 rocky planets around G and K-type stars within 10 parsecs (32.6 light years) of the Sun.


A stable habitable zone

The habitable zone (HZ) is a
shell Shell may refer to: Architecture and design * Shell (structure), a thin structure ** Concrete shell, a thin shell of concrete, usually with no interior columns or exterior buttresses ** Thin-shell structure Science Biology * Seashell, a hard o ...
-shaped region of space surrounding a star in which a planet could maintain liquid water on its surface. The concept was first proposed by astrophysicist Su-Shu Huang in 1959, based on climatic constraints imposed by the host star. After an energy source, liquid water is widely considered the most important ingredient for life, considering how integral it is to all life systems on Earth. However, if life is discovered in the absence of water, the definition of an HZ may have to be greatly expanded. The inner edge of the HZ is the distance where
runaway greenhouse effect A runaway greenhouse effect occurs when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A ...
vaporize the whole water reservoir and, as a second effect, induce the photodissociation of water vapor and the loss of hydrogen to space. The outer edge of the HZ is the distance from the star where a maximum greenhouse effect fails to keep the surface of the planet above the freezing point, and by condensation. A "stable" HZ implies two factors. First, the range of an HZ should not vary greatly over time. All stars increase in luminosity as they age, and a given HZ thus migrates outwards, but if this happens too quickly (for example, with a super-massive star) planets may only have a brief window inside the HZ and a correspondingly smaller chance of developing life. Calculating an HZ range and its long-term movement is never straightforward, as negative
feedback loops Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
such as the
CNO cycle The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, ...
will tend to offset the increases in luminosity. Assumptions made about atmospheric conditions and geology thus have as great an impact on a putative HZ range as does stellar evolution: the proposed parameters of the Sun's HZ, for example, have fluctuated greatly. Second, no large-mass body such as a
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
should be present in or relatively close to the HZ, thus disrupting the formation of Earth-size bodies. The matter in the asteroid belt, for example, appears to have been unable to accrete into a planet due to orbital resonances with Jupiter; if the giant had appeared in the region that is now between the orbits of
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
and
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
, Earth would almost certainly not have developed in its present form. However a gas giant inside the HZ might have
habitable moon The habitability of natural satellites is a measure of their potential to sustain life in favorable circumstances. Habitable environments do not necessarily harbor life. Natural satellite habitability is a new area that is significant to astr ...
s under the right conditions.


Low stellar variation

Changes in luminosity are common to all stars, but the severity of such fluctuations covers a broad range. Most stars are relatively stable, but a significant minority of variable stars often undergo sudden and intense increases in luminosity and consequently in the amount of energy radiated toward bodies in orbit. These stars are considered poor candidates for hosting life-bearing planets, as their unpredictability and energy output changes would negatively impact
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and ...
s: living things adapted to a specific temperature range could not survive too great a temperature variation. Further, upswings in luminosity are generally accompanied by massive doses of
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
and
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
radiation which might prove lethal. Atmospheres do mitigate such effects, but their atmosphere might not be retained by planets orbiting variables, because the high-frequency energy buffeting these planets would continually strip them of their protective covering. The Sun, in this respect as in many others, is relatively benign: the variation between its maximum and minimum energy output is roughly 0.1% over its 11-year
solar cycle The solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a nearly periodic 11-year change in the Sun's activity measured in terms of variations in the number of observed sunspots on the Sun's surfa ...
. There is strong (though not undisputed) evidence that even minor changes in the Sun's luminosity have had significant effects on the Earth's climate well within the historical era: the Little Ice Age of the mid-second millennium, for instance, may have been caused by a relatively long-term decline in the Sun's luminosity. Thus, a star does not have to be a true variable for differences in luminosity to affect habitability. Of known
solar analog Solar-type star, solar analogs (also analogues), and solar twins are stars that are particularly similar to the Sun. The stellar classification is a hierarchy with solar twin being most like the Sun followed by solar analog and then solar-type ...
s, one that closely resembles the Sun is considered to be 18 Scorpii; unfortunately for the prospects of life existing in its proximity, the only significant difference between the two bodies is the amplitude of the solar cycle, which appears to be much greater for 18 Scorpii.


High metallicity

While the bulk of material in any star is
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, there is a significant variation in the amount of heavier elements (
metals A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typical ...
). A high proportion of metals in a star correlates to the amount of heavy material initially available in the
protoplanetary disk A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, be ...
. A smaller amount of metal makes the formation of planets much less likely, under the solar nebula theory of planetary system formation. Any planets that did form around a metal-poor star would probably be low in mass, and thus unfavorable for life.
Spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
studies of systems where exoplanets have been found to date confirm the relationship between high metal content and planet formation: "Stars with planets, or at least with planets similar to the ones we are finding today, are clearly more metal rich than stars without planetary companions." This relationship between high metallicity and planet formation also means that habitable systems are more likely to be found around stars of younger generations, since stars that formed early in the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
's history have low metal content.


Planetary characteristics

Habitability indicators and biosignatures must be interpreted within a planetary and environmental context. Whether a planet will emerge as habitable depends on the sequence of events that led to its formation, which could include the production of organic molecules in
molecular cloud A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydroge ...
s and
protoplanetary disk A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, be ...
s, delivery of materials during and after planetary accretion, and the orbital location in the planetary system. The chief assumption about habitable planets is that they are
terrestrial Terrestrial refers to things related to land or the planet Earth. Terrestrial may also refer to: * Terrestrial animal, an animal that lives on land opposed to living in water, or sometimes an animal that lives on or near the ground, as opposed to ...
. Such planets, roughly within one
order of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic di ...
of Earth mass, are primarily composed of silicate rocks, and have not accreted the gaseous outer layers of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
found on
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
s. The possibility that life could evolve in the cloud tops of giant planets has not been decisively ruled out, though it is considered unlikely, as they have no surface and their gravity is enormous. The natural satellites of giant planets, meanwhile, remain valid candidates for hosting life. In February 2011 the Kepler Space Observatory Mission team released a list of 1235 extrasolar planet candidates, including 54 that may be in the habitable zone. Six of the candidates in this zone are smaller than twice the size of Earth. A more recent study found that one of these candidates (KOI 326.01) is much larger and hotter than first reported. Based on the findings, the Kepler team estimated there to be "at least 50 billion planets in the Milky Way" of which "at least 500 million" are in the habitable zone. In analyzing which environments are likely to support life, a distinction is usually made between simple, unicellular organisms such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
and archaea and complex metazoans (animals). Unicellularity necessarily precedes multicellularity in any hypothetical tree of life, and where single-celled organisms do emerge there is no assurance that greater complexity will then develop.There is an emerging consensus that single-celled micro-organisms may in fact be common in the universe, especially since Earth's
extremophile An extremophile (from Latin ' meaning "extreme" and Greek ' () meaning "love") is an organism that is able to live (or in some cases thrive) in extreme environments, i.e. environments that make survival challenging such as due to extreme temper ...
s flourish in environments that were once considered hostile to life. The potential occurrence of complex multi-celled life remains much more controversial. In their work '' Rare Earth: Why Complex Life Is Uncommon in the Universe'', Peter Ward and Donald Brownlee argue that microbial life is probably widespread while complex life is very rare and perhaps even unique to Earth. Current knowledge of Earth's history partly buttresses this theory: multi-celled organisms are believed to have emerged at the time of the Cambrian explosion close to 600 million years ago, but more than 3 billion years after life first appeared. That Earth life remained unicellular for so long underscores that the decisive step toward complex organisms need not necessarily occur.
The planetary characteristics listed below are considered crucial for life generally, but in every case multicellular organisms are more picky than unicellular life.


Mass and size

Low-mass planets are poor candidates for life for two reasons. First, their lesser
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
makes atmosphere retention difficult. Constituent
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
s are more likely to reach
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
and be lost to space when buffeted by
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
or stirred by collision. Planets without a thick atmosphere lack the matter necessary for primal
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
, have little insulation and poor
heat transfer Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
across their surfaces (for example,
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
, with its thin atmosphere, is colder than the Earth would be if it were at a similar distance from the Sun), and provide less protection against
meteoroid A meteoroid () is a small rocky or metallic body in outer space. Meteoroids are defined as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than this are classified as mi ...
s and high-frequency radiation. Further, where an atmosphere is less dense than 0.006 Earth atmospheres, water cannot exist in liquid form as the required
atmospheric pressure Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, ...
, 4.56
mm Hg A millimetre of mercury is a manometric unit of pressure, formerly defined as the extra pressure generated by a column of mercury one millimetre high, and currently defined as exactly pascals. It is denoted mmHg or mm Hg. Although not an ...
(608 Pa) (0.18 inch Hg), does not occur. In addition, a lessened pressure reduces the range of temperatures at which water is liquid. Secondly, smaller planets have smaller
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid fo ...
s and thus higher surface-to-volume ratios than their larger cousins. Such bodies tend to lose the energy left over from their formation quickly and end up
geologically Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other E ...
dead, lacking the
volcano A volcano is a rupture in the Crust (geology), crust of a Planet#Planetary-mass objects, planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and volcanic gas, gases to escape from a magma chamber below the surface. On Ear ...
es,
earthquake An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
s and tectonic activity which supply the surface with life-sustaining material and the atmosphere with temperature moderators like
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
. Plate tectonics appear particularly crucial, at least on Earth: not only does the process recycle important chemicals and minerals, it also fosters bio-diversity through continent creation and increased environmental complexity and helps create the convective cells necessary to generate
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic ...
. "Low mass" is partly a relative label: the Earth is low mass when compared to the Solar System's
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
s, but it is the largest, by diameter and mass, and the densest of all terrestrial bodies.There is a "mass-gap" in the Solar System between Earth and the two smallest gas giants,
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus ( Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of ...
and Neptune, which are 13 and 17 Earth masses. This is probably just chance, as there is no geophysical barrier to the formation of intermediate bodies (see for instance
OGLE-2005-BLG-390Lb OGLE-2005-BLG-390Lb (known sometimes as Hoth by NASA) is a super-Earth exoplanet orbiting OGLE-2005-BLG-390L, a star from Earth near the center of the Milky Way, making it one of the most distant planets known. On January 25, 2006, Probing Len ...
and
Super-Earth A super-Earth is an extrasolar planet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to ...
) and we should expect to find planets throughout the galaxy between two and twelve Earth masses. If the star system is otherwise favorable, such planets would be good candidates for life as they would be large enough to remain internally dynamic and to retain an atmosphere for billions of years but not so large as to accrete a gaseous shell which limits the possibility of life formation.
It is large enough to retain an atmosphere through gravity alone and large enough that its molten core remains a heat engine, driving the diverse geology of the surface (the decay of
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
elements within a planet's core is the other significant component of planetary heating). Mars, by contrast, is nearly (or perhaps totally) geologically dead and has lost much of its atmosphere. Thus it would be fair to infer that the lower mass limit for habitability lies somewhere between that of Mars and that of Earth or Venus: 0.3 Earth masses has been offered as a rough dividing line for habitable planets. However, a 2008 study by the Harvard-Smithsonian Center for Astrophysics suggests that the dividing line may be higher. Earth may in fact lie on the lower boundary of habitability: if it were any smaller, plate tectonics would be impossible. Venus, which has 85% of Earth's mass, shows no signs of tectonic activity. Conversely, "
super-Earth A super-Earth is an extrasolar planet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to ...
s", terrestrial planets with higher masses than Earth, would have higher levels of plate tectonics and thus be firmly placed in the habitable range. Exceptional circumstances do offer exceptional cases:
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
's moon Io (which is smaller than any of the terrestrial planets) is volcanically dynamic because of the gravitational stresses induced by its orbit, and its neighbor Europa may have a liquid ocean or icy slush underneath a frozen shell also due to power generated from orbiting a gas giant. Saturn's Titan, meanwhile, has an outside chance of harbouring life, as it has retained a thick atmosphere and has liquid
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
seas on its surface. Organic-chemical reactions that only require minimum energy are possible in these seas, but whether any living system can be based on such minimal reactions is unclear, and would seem unlikely. These satellites are exceptions, but they prove that mass, as a criterion for habitability, cannot necessarily be considered definitive at this stage of our understanding. A larger planet is likely to have a more massive atmosphere. A combination of higher escape velocity to retain lighter atoms, and extensive outgassing from enhanced plate tectonics may greatly increase the atmospheric pressure and temperature at the surface compared to Earth. The enhanced greenhouse effect of such a heavy atmosphere would tend to suggest that the habitable zone should be further out from the central star for such massive planets. Finally, a larger planet is likely to have a large iron core. This allows for a magnetic field to protect the planet from stellar wind and cosmic radiation, which otherwise would tend to strip away planetary atmosphere and to bombard living things with ionized particles. Mass is not the only criterion for producing a magnetic field—as the planet must also rotate fast enough to produce a dynamo effect within its core—but it is a significant component of the process. The mass of a potentially habitable exoplanet is between 0.1 and 5.0 Earth masses. However it is possible for a habitable world to have a mass as low as 0.0268 Earth Masses. The radius of a potentially habitable exoplanet would range between 0.5 and 1.5 Earth radii.


Orbit and rotation

As with other criteria, stability is the critical consideration in evaluating the effect of orbital and rotational characteristics on planetary habitability. Orbital eccentricity is the difference between a planet's farthest and closest approach to its parent star divided by the sum of said distances. It is a ratio describing the shape of the elliptical orbit. The greater the eccentricity the greater the temperature fluctuation on a planet's surface. Although they are adaptive, living organisms can stand only so much variation, particularly if the fluctuations overlap both the
freezing point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depend ...
and boiling point of the planet's main biotic solvent (e.g., water on Earth). If, for example, Earth's oceans were alternately boiling and freezing solid, it is difficult to imagine life as we know it having evolved. The more complex the organism, the greater the temperature sensitivity. The Earth's orbit is almost perfectly circular, with an eccentricity of less than 0.02; other planets in the Solar System (with the exception of Mercury) have eccentricities that are similarly benign. Habitability is also influenced by the architecture of the planetary system around a star. The evolution and stability of these systems are determined by gravitational dynamics, which drive the orbital evolution of terrestrial planets. Data collected on the orbital eccentricities of extrasolar planets has surprised most researchers: 90% have an orbital eccentricity greater than that found within the Solar System, and the average is fully 0.25. This means that the vast majority of planets have highly eccentric orbits and of these, even if their average distance from their star is deemed to be within the HZ, they nonetheless would be spending only a small portion of their time within the zone. A planet's movement around its rotational axis must also meet certain criteria if life is to have the opportunity to evolve. A first assumption is that the planet should have moderate
season A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's tilted orbit around the Sun. In temperate and ...
s. If there is little or no
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
(or obliquity) relative to the perpendicular of the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
, seasons will not occur and a main stimulant to biospheric dynamism will disappear. The planet would also be colder than it would be with a significant tilt: when the greatest intensity of radiation is always within a few degrees of the equator, warm weather cannot move poleward and a planet's climate becomes dominated by colder polar weather systems. If a planet is radically tilted, seasons will be extreme and make it more difficult for a
biosphere The biosphere (from Greek βίος ''bíos'' "life" and σφαῖρα ''sphaira'' "sphere"), also known as the ecosphere (from Greek οἶκος ''oîkos'' "environment" and σφαῖρα), is the worldwide sum of all ecosystems. It can also ...
to achieve
homeostasis In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
. The axial tilt of the Earth is higher now (in the Quaternary) than it has been in the past, coinciding with reduced polar
ice Ice is water frozen into a solid state, typically forming at or below temperatures of 0 degrees Celsius or Depending on the presence of impurities such as particles of soil or bubbles of air, it can appear transparent or a more or less opaqu ...
, warmer temperatures and ''less'' seasonal variation. Scientists do not know whether this trend will continue indefinitely with further increases in axial tilt (see Snowball Earth). The exact effects of these changes can only be computer modelled at present, and studies have shown that even extreme tilts of up to 85 degrees do not absolutely preclude life "provided it does not occupy continental surfaces plagued seasonally by the highest temperature." Not only the mean axial tilt, but also its variation over time must be considered. The Earth's tilt varies between 21.5 and 24.5 degrees over 41,000 years. A more drastic variation, or a much shorter periodicity, would induce climatic effects such as variations in seasonal severity. Other orbital considerations include: * The planet should rotate relatively quickly so that the day-night cycle is not overlong. If a day takes years, the temperature differential between the day and night side will be pronounced, and problems similar to those noted with extreme orbital eccentricity will come to the fore. * The planet also should rotate quickly enough so that a magnetic dynamo may be started in its iron core to produce a magnetic field. * Change in the direction of the axis rotation (
precession Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In oth ...
) should not be pronounced. In itself, precession need not affect habitability as it changes the direction of the tilt, not its degree. However, precession tends to accentuate variations caused by other orbital deviations; see
Milankovitch cycles Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypot ...
. Precession on Earth occurs over a 26,000-year cycle. The Earth's
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
appears to play a crucial role in moderating the Earth's climate by stabilising the axial tilt. It has been suggested that a chaotic tilt may be a "deal-breaker" in terms of habitability—i.e. a satellite the size of the Moon is not only helpful but required to produce stability. This position remains controversial.According to prevailing theory, the formation of the Moon commenced when a Mars-sized body struck the Earth in a glancing collision late in its formation, and the ejected material coalesced and fell into orbit (see
giant impact hypothesis The giant-impact hypothesis, sometimes called the Big Splash, or the Theia Impact, suggests that the Moon formed from the ejecta of a collision between the proto-Earth and a Mars-sized planet, approximately 4.5 billion years ago, in the Hadean ...
). In ''Rare Earth'' Ward and Brownlee emphasize that such impacts ought to be rare, reducing the probability of other Earth-Moon type systems and hence the probability of other habitable planets. Other moon formation processes are possible, however, and the proposition that a planet may be habitable in the absence of a moon has not been disproven.
In the case of the Earth, the sole Moon is sufficiently massive and orbits so as to significantly contribute to ocean tides, which in turn aids the dynamic churning of Earth's large liquid water oceans. These lunar forces not only help ensure that the oceans do not stagnate, but also play a critical role in Earth's dynamic climate.


Geology

Concentrations of radionuclides in rocky planet mantles may be critical for the habitability of Earth-like planets. Such planets with higher abundances likely lack a persistent dynamo for a significant fraction of their lifetimes, and those with lower concentrations may often be geologically inert. Planetary dynamos create strong magnetic fields which may often be necessary for life to develop or persist as they shield planets from
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
s and cosmic radiation. The electromagnetic emission spectra of stars could be used to identify those which are more likely to host habitable Earth-like planets. As of 2020, radionuclides are thought to be produced by rare stellar processes such as
neutron star merger A neutron star merger is a type of stellar collision. It occurs in a fashion similar to the rare brand of type Ia supernovae resulting from merging white dwarf stars. When two neutron stars orbit each other closely, they gradually spiral i ...
s. Additional geological characteristics may be essential or major factors in the habitability of natural celestial bodies – including some that may shape the body's heat and magnetic field. Some of these are unknown or not well understood and being investigated by
planetary scientist Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their ...
s, geochemists and others.


Geochemistry

It is generally assumed that any extraterrestrial life that might exist will be based on the same fundamental
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
as found on Earth, as the four elements most vital for life,
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
,
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
, and
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, are also the most common chemically reactive elements in the universe. Indeed, simple biogenic compounds, such as very simple
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s such as
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
, have been found in meteorites and in the interstellar medium. These four elements together comprise over 96% of Earth's collective biomass. Carbon has an unparalleled ability to bond with itself and to form a massive array of intricate and varied structures, making it an ideal material for the complex mechanisms that form living cells. Hydrogen and oxygen, in the form of water, compose the solvent in which biological processes take place and in which the first reactions occurred that led to life's emergence. The energy released in the formation of powerful covalent bonds between carbon and oxygen, available by oxidizing organic compounds, is the fuel of all complex life-forms. These four elements together make up amino acids, which in turn are the building blocks of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s, the substance of living tissue. In addition, neither sulfur (required for the building of proteins) nor
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
(needed for the formation of DNA, RNA, and the adenosine phosphates essential to
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
) are rare. Relative abundance in space does not always mirror differentiated abundance within planets; of the four life elements, for instance, only
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
is present in any abundance in the Earth's crust. This can be partly explained by the fact that many of these elements, such as
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, along with their simplest and most common compounds, such as
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
,
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
,
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
,
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
, and water, are gaseous at warm temperatures. In the hot region close to the Sun, these volatile compounds could not have played a significant role in the planets' geological formation. Instead, they were trapped as gases underneath the newly formed crusts, which were largely made of rocky, involatile compounds such as
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
(a compound of
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
and oxygen, accounting for oxygen's relative abundance).
Outgassing Outgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (which ...
of volatile compounds through the first volcanoes would have contributed to the formation of the planets' atmospheres. The
Miller–Urey experiment The Miller–Urey experiment (or Miller experiment) is a famous chemistry experiment that simulated the conditions thought at the time (1952) to be present in the atmosphere of the early, prebiotic Earth, in order to test the hypothesis of the ...
showed that, with the application of energy, simple inorganic compounds exposed to a primordial atmosphere can react to synthesize
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s. Even so,
volcanic A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates a ...
outgassing could not have accounted for the amount of water in Earth's oceans. The vast majority of the water—and arguably carbon—necessary for life must have come from the outer Solar System, away from the Sun's heat, where it could remain solid.
Comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ...
s impacting with the Earth in the Solar System's early years would have deposited vast amounts of water, along with the other volatile compounds life requires, onto the early Earth, providing a kick-start to the
origin of life In biology, abiogenesis (from a- 'not' + Greek bios 'life' + genesis 'origin') or the origin of life is the natural process by which life has arisen from non-living matter, such as simple organic compounds. The prevailing scientific hypothes ...
. Thus, while there is reason to suspect that the four "life elements" ought to be readily available elsewhere, a habitable system probably also requires a supply of long-term orbiting bodies to seed inner planets. Without comets there is a possibility that life as we know it would not exist on Earth.


Microenvironments and extremophiles

One important qualification to habitability criteria is that only a tiny portion of a planet is required to support life, a so-called Goldilocks Edge or Great Prebiotic Spot. Astrobiologists often concern themselves with "micro-environments", noting that "we lack a fundamental understanding of how evolutionary forces, such as
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA replication, DNA or viral repl ...
,
selection Selection may refer to: Science * Selection (biology), also called natural selection, selection in evolution ** Sex selection, in genetics ** Mate selection, in mating ** Sexual selection in humans, in human sexuality ** Human mating strateg ...
, and
genetic drift Genetic drift, also known as allelic drift or the Wright effect, is the change in the frequency of an existing gene variant (allele) in a population due to random chance. Genetic drift may cause gene variants to disappear completely and there ...
, operate in micro-organisms that act on and respond to changing micro-environments."
Extremophile An extremophile (from Latin ' meaning "extreme" and Greek ' () meaning "love") is an organism that is able to live (or in some cases thrive) in extreme environments, i.e. environments that make survival challenging such as due to extreme temper ...
s are Earth organisms that live in niche environments under severe conditions generally considered
inimical Hostility is seen as form of emotionally charged aggressive behavior. In everyday speech it is more commonly used as a synonym for anger and aggression. It appears in several psychological theories. For instance it is a facet of neuroticism ...
to life. Usually (although not always) unicellular, extremophiles include acutely
alkaliphilic Alkaliphiles are a class of extremophilic microbes capable of survival in alkaline ( pH roughly 8.5–11) environments, growing optimally around a pH of 10. These bacteria can be further categorized as obligate alkaliphiles (those that require high ...
and acidophilic organisms and others that can survive water temperatures above 100 °C in hydrothermal vents. The discovery of life in extreme conditions has complicated definitions of habitability, but also generated much excitement amongst researchers in greatly broadening the known range of conditions under which life can persist. For example, a planet that might otherwise be unable to support an atmosphere given the solar conditions in its vicinity, might be able to do so within a deep shadowed rift or volcanic cave. Similarly, craterous terrain might offer a refuge for primitive life. The Lawn Hill crater has been studied as an astrobiological analog, with researchers suggesting rapid sediment infill created a protected microenvironment for microbial organisms; similar conditions may have occurred over the geological history of
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
. Earth environments that ''cannot'' support life are still instructive to astrobiologists in defining the limits of what organisms can endure. The heart of the
Atacama desert The Atacama Desert ( es, Desierto de Atacama) is a desert plateau in South America covering a 1,600 km (990 mi) strip of land on the Pacific coast, west of the Andes Mountains. The Atacama Desert is the driest nonpolar desert in th ...
, generally considered the driest place on Earth, appears unable to support life, and it has been subject to study by NASA and
ESA , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (120 ...
for that reason: it provides a Mars analog and the moisture gradients along its edges are ideal for studying the boundary between sterility and habitability. The Atacama was the subject of study in 2003 that partly replicated experiments from the
Viking Vikings ; non, víkingr is the modern name given to seafaring people originally from Scandinavia (present-day Denmark, Norway and Sweden), who from the late 8th to the late 11th centuries raided, pirated, traded and se ...
landings on Mars in the 1970s; no DNA could be recovered from two soil samples, and incubation experiments were also negative for biosignatures.


Ecological factors

The two current ecological approaches for predicting the potential habitability use 19 or 20 environmental factors, with emphasis on water availability, temperature, presence of nutrients, an energy source, and protection from solar ultraviolet and galactic cosmic radiation.


Classification terminology

The Habitable Exoplanets CatalogPHL's Exoplanets Catalog - Planetary Habitability Laboratory @ UPR Arecibo
/ref> uses estimated surface temperature range to classify exoplanets: * hypopsychroplanets - very cold (<−50 °C) * psychroplanets - cold (<−50 to 0 °C) * mesoplanets - medium temperature (0–50 °C; not to be confused with the other definition of mesoplanets) * thermoplanets - hot (50-100 °C) * hyperthermoplanets - (> 100 °C) Mesoplanets would be ideal for complex life, whereas hypopsychroplanets and hyperthermoplanets might only support
extremophilic An extremophile (from Latin ' meaning "extreme" and Greek ' () meaning "love") is an organism that is able to live (or in some cases thrive) in extreme environments, i.e. environments that make survival challenging such as due to extreme tempe ...
life. The HEC uses the following terms to classify exoplanets in terms of mass, from least to greatest: asteroidan, mercurian, subterran, terran, superterran, neptunian, and jovian.


Alternative star systems

In determining the feasibility of extraterrestrial life, astronomers had long focused their attention on stars like the Sun. However, since planetary systems that resemble the Solar System are proving to be rare, they have begun to explore the possibility that life might form in systems very unlike our own.


Binary systems

Typical estimates often suggest that 50% or more of all stellar systems are
binary systems Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that ...
. This may be partly sample bias, as massive and bright stars tend to be in binaries and these are most easily observed and catalogued; a more precise analysis has suggested that the more common fainter stars are usually singular, and that up to two thirds of all stellar systems are therefore solitary. The separation between stars in a binary may range from less than one
astronomical unit The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits ...
(AU, the average Earth–Sun distance) to several hundred. In latter instances, the gravitational effects will be negligible on a planet orbiting an otherwise suitable star and habitability potential will not be disrupted unless the orbit is highly eccentric (see Nemesis, for example). However, where the separation is significantly less, a stable orbit may be impossible. If a planet's distance to its primary exceeds about one fifth of the closest approach of the other star, orbital stability is not guaranteed. Whether planets might form in binaries at all had long been unclear, given that gravitational forces might interfere with planet formation. Theoretical work by
Alan Boss Alan P. Boss (born in Lakewood, Ohio) is a United States astrophysicist and planetary scientist. Life and career Educated at the University of South Florida and the University of California, Santa Barbara, Boss is a prominent scientist in stella ...
at the
Carnegie Institution The Carnegie Institution of Washington (the organization's legal name), known also for public purposes as the Carnegie Institution for Science (CIS), is an organization in the United States established to fund and perform scientific research. T ...
has shown that gas giants can form around stars in binary systems much as they do around solitary stars. One study of Alpha Centauri, the nearest star system to the Sun, suggested that binaries need not be discounted in the search for habitable planets. Centauri A and B have an 11 AU distance at closest approach (23 AU mean), and both should have stable habitable zones. A study of long-term orbital stability for simulated planets within the system shows that planets within approximately three AU of either star may remain rather stable (i.e. the semi-major axis deviating by less than 5% during 32 000 binary periods). The continuous habitable zone (CHZ for 4.5 billion years) for Centauri A is conservatively estimated at 1.2 to 1.3 AU and Centauri B at 0.73 to 0.74—well within the stable region in both cases.


Red dwarf systems

Determining the habitability of red dwarf stars could help determine how common life in the universe might be, as red dwarfs make up between 70 and 90% of all the stars in the galaxy.


Size

Astronomers for many years ruled out red dwarfs as potential abodes for life. Their small size (from 0.08 to 0.45 solar masses) means that their
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformatio ...
s proceed exceptionally slowly, and they emit very little light (from 3% of that produced by the Sun to as little as 0.01%). Any planet in orbit around a red dwarf would have to huddle very close to its parent star to attain Earth-like surface temperatures; from 0.3 AU (just inside the orbit of Mercury) for a star like
Lacaille 8760 Lacaille 8760 (AX Microscopii) is a red dwarf star in the constellation Microscopium. It is one of the nearest stars to the Sun at about 12.9 light-years' distance, and the brightest M dwarf star in Earth's night sky, although it is ge ...
, to as little as 0.032 AU for a star like Proxima Centauri (such a world would have a year lasting just 6.3 days). At those distances, the star's gravity would cause tidal locking. One side of the planet would eternally face the star, while the other would always face away from it. The only ways in which potential life could avoid either an inferno or a deep freeze would be if the planet had an atmosphere thick enough to transfer the star's heat from the day side to the night side, or if there was a gas giant in the habitable zone, with a
habitable moon The habitability of natural satellites is a measure of their potential to sustain life in favorable circumstances. Habitable environments do not necessarily harbor life. Natural satellite habitability is a new area that is significant to astr ...
, which would be locked to the planet instead of the star, allowing a more even distribution of radiation over the planet. It was long assumed that such a thick atmosphere would prevent sunlight from reaching the surface in the first place, preventing
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
. This pessimism has been tempered by research. Studies by Robert Haberle and Manoj Joshi of
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the US federal government responsible for the civil List of government space agencies, space program ...
's
Ames Research Center The Ames Research Center (ARC), also known as NASA Ames, is a major NASA research center at Moffett Federal Airfield in California's Silicon Valley. It was founded in 1939 as the second National Advisory Committee for Aeronautics (NACA) labo ...
in California have shown that a planet's atmosphere (assuming it included greenhouse gases CO2 and H2O) need only be , for the star's heat to be effectively carried to the night side. This is well within the levels required for photosynthesis, though water would still remain frozen on the dark side in some of their models. Martin Heath of Greenwich Community College, has shown that seawater, too, could be effectively circulated without freezing solid if the ocean basins were deep enough to allow free flow beneath the night side's ice cap. Further research—including a consideration of the amount of photosynthetically active radiation—suggested that tidally locked planets in red dwarf systems might at least be habitable for higher plants.


Other factors limiting habitability

Size is not the only factor in making red dwarfs potentially unsuitable for life, however. On a red dwarf planet, photosynthesis on the night side would be impossible, since it would never see the sun. On the day side, because the sun does not rise or set, areas in the shadows of mountains would remain so forever.
Photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
as we understand it would be complicated by the fact that a red dwarf produces most of its radiation in the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
, and on the Earth the process depends on visible light. There are potential positives to this scenario. Numerous terrestrial ecosystems rely on
chemosynthesis In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrog ...
rather than photosynthesis, for instance, which would be possible in a red dwarf system. A static primary star position removes the need for plants to steer leaves toward the sun, deal with changing shade/sun patterns, or change from photosynthesis to stored energy during night. Because of the lack of a day-night cycle, including the weak light of morning and evening, far more energy would be available at a given radiation level. Red dwarfs are far more variable and violent than their more stable, larger cousins. Often they are covered in
starspot Starspots are stellar phenomena, so-named by analogy with sunspots. Spots as small as sunspots have not been detected on other stars, as they would cause undetectably small fluctuations in brightness. The commonly observed starspots are in gene ...
s that can dim their emitted light by up to 40% for months at a time, while at other times they emit gigantic flares that can double their brightness in a matter of minutes. Such variation would be very damaging for life, as it would not only destroy any complex organic molecules that could possibly form biological precursors, but also because it would blow off sizeable portions of the planet's atmosphere. For a planet around a red dwarf star to support life, it would require a rapidly rotating magnetic field to protect it from the flares. A tidally locked planet rotates only very slowly, and so cannot produce a geodynamo at its core. The violent flaring period of a red dwarf's life cycle is estimated to only last roughly the first 1.2 billion years of its existence. If a planet forms far away from a red dwarf so as to avoid tidal locking, and then migrates into the star's habitable zone after this turbulent initial period, it is possible that life may have a chance to develop. However, observations of the 7 to 12-billion year old
Barnard's Star Barnard's Star is a red dwarf about six light-years from Earth in the constellation of Ophiuchus. It is the fourth-nearest-known individual star to the Sun after the three components of the Alpha Centauri system, and the closest star in t ...
showcase that even old red dwarfs can have significant flare activity. Barnard's Star was long assumed to have little activity, but in 1998 astronomers observed an intense
stellar flare The asterisk ( ), from Late Latin , from Ancient Greek , ''asteriskos'', "little star", is a typographical symbol. It is so called because it resembles a conventional image of a heraldic star. Computer scientists and mathematicians often voc ...
, showing that it is a
flare star A flare star is a variable star that can undergo unpredictable dramatic increases in brightness for a few minutes. It is believed that the flares on flare stars are analogous to solar flares in that they are due to the magnetic energy stored in th ...
.


Longevity and ubiquity

Red dwarfs have one advantage over other stars as abodes for life: far greater longevity. It took 4.5 billion years before humanity appeared on Earth, and life as we know it will see suitable conditions for 1 to 2.3 more. Red dwarfs, by contrast, could live for trillions of years because their nuclear reactions are far slower than those of larger stars, meaning that life would have longer to evolve and survive. While the likelihood of finding a planet in the habitable zone around any specific red dwarf is slight, the total amount of habitable zone around all red dwarfs combined is equal to the total amount around Sun-like stars given their ubiquity. Furthermore, this total amount of habitable zone will last longer, because red dwarf stars live for hundreds of billions of years or even longer on the main sequence. However, combined with the above disadvantages, it is more likely that red dwarf stars would remain habitable longer to microbes, while the shorter-lived yellow dwarf stars, like the Sun, would remain habitable longer to animals.


Massive stars

Recent research suggests that very large stars, greater than ~100 solar masses, could have planetary systems consisting of hundreds of Mercury-sized planets within the habitable zone. Such systems could also contain
brown dwarfs Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
and low-mass stars (~0.1–0.3 solar masses). However the very short lifespans of stars of more than a few solar masses would scarcely allow time for a planet to cool, let alone the time needed for a stable biosphere to develop. Massive stars are thus eliminated as possible abodes for life. However, a massive-star system could be a progenitor of life in another way – the supernova explosion of the massive star in the central part of the system. This supernova will disperse heavier elements throughout its vicinity, created during the phase when the massive star has moved off of the main sequence, and the systems of the potential low-mass stars (which are still on the main sequence) within the former massive-star system may be enriched with the relatively large supply of the heavy elements so close to a supernova explosion. However, this states nothing about what types of planets would form as a result of the supernova material, or what their habitability potential would be.


Four classes of habitable planets based on water

In a review of the factors which are important for the evolution of habitable Earth-sized planets, Lammer et al. proposed a classification of four water-dependent habitat types: Class I habitats are planetary bodies on which stellar and geophysical conditions allow liquid water to be available at the surface, along with sunlight, so that complex multicellular organisms may originate. Class II habitats include bodies which initially enjoy Earth-like conditions, but do not keep their ability to sustain liquid water on their surface due to stellar or geophysical conditions. Mars, and possibly Venus are examples of this class where complex life forms may not develop. Class III habitats are planetary bodies where liquid water oceans exist below the surface, where they can interact directly with a silicate-rich
core Core or cores may refer to: Science and technology * Core (anatomy), everything except the appendages * Core (manufacturing), used in casting and molding * Core (optical fiber), the signal-carrying portion of an optical fiber * Core, the centra ...
. :Such a situation can be expected on water-rich planets located too far from their star to allow surface liquid water, but on which subsurface water is in liquid form because of the
geothermal heat Geothermal heating is the direct use of geothermal energy for some heating applications. Humans have taken advantage of geothermal heat this way since the Paleolithic era. Approximately seventy countries made direct use of a total of 270 PJ of ...
. Two examples of such an environment are Europa and
Enceladus Enceladus is the sixth-largest moon of Saturn (19th largest in the Solar System). It is about in diameter, about a tenth of that of Saturn's largest moon, Titan. Enceladus is mostly covered by fresh, clean ice, making it one of the most refle ...
. In such worlds, not only is light not available as an energy source, but the organic material brought by meteorites (thought to have been necessary to start life in some scenarios) may not easily reach the liquid water. If a planet can only harbor life below its surface, the
biosphere The biosphere (from Greek βίος ''bíos'' "life" and σφαῖρα ''sphaira'' "sphere"), also known as the ecosphere (from Greek οἶκος ''oîkos'' "environment" and σφαῖρα), is the worldwide sum of all ecosystems. It can also ...
would not likely modify the whole planetary environment in an observable way, thus, detecting its presence on an exoplanet would be extremely difficult. Class IV habitats have liquid water layers between two ice layers, or liquids above ice. :If the water layer is thick enough, water at its base will be in solid phase (ice polymorphs) because of the high pressure. Ganymede and
Callisto Callisto most commonly refers to: *Callisto (mythology), a nymph *Callisto (moon), a moon of Jupiter Callisto may also refer to: Art and entertainment *''Callisto series'', a sequence of novels by Lin Carter *''Callisto'', a novel by Torsten Kro ...
are likely examples of this class. Their oceans are thought to be enclosed between thick ice layers. In such conditions, the emergence of even simple life forms may be very difficult because the necessary ingredients for life will likely be completely diluted.


The galactic neighborhood

Along with the characteristics of planets and their star systems, the wider galactic environment may also impact habitability. Scientists considered the possibility that particular areas of galaxies (
galactic habitable zone In astrobiology and planetary astrophysics, the galactic habitable zone is the region of a galaxy in which life might most likely develop. The concept of a galactic habitable zone analyzes various factors, such as metallicity (the presence of elem ...
s) are better suited to life than others; the Solar System in which we live, in the Orion Spur, on the Milky Way galaxy's edge is considered to be in a life-favorable spot: * It is not in a
globular cluster A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of membe ...
where immense star densities are inimical to life, given excessive radiation and gravitational disturbance. Globular clusters are also primarily composed of older, probably metal-poor, stars. Furthermore, in globular clusters, the great ages of the stars would mean a large amount of stellar evolution by the host or other nearby stars, which due to their proximity may cause extreme harm to life on any planets, provided that they can form. * It is not near an active
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
source. * It is not near the galactic center where once again star densities increase the likelihood of ionizing radiation (e.g., from
magnetar A magnetar is a type of neutron star with an extremely powerful magnetic field (∼109 to 1011 T, ∼1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.War ...
s and supernovae). The
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
s at the centers of galaxies may also prove a danger to any nearby bodies. * The circular orbit of the Sun around the galactic center keeps it out of the way of the galaxy's spiral arms where intense radiation and gravitation may again lead to disruption. Thus, relative isolation is ultimately what a life-bearing system needs. If the Sun were crowded amongst other systems, the chance of being fatally close to dangerous radiation sources would increase significantly. Further, close neighbors might disrupt the stability of various orbiting bodies such as
Oort cloud The Oort cloud (), sometimes called the Öpik–Oort cloud, first described in 1950 by the Dutch astronomer Jan Oort, is a theoretical concept of a cloud of predominantly icy planetesimals proposed to surround the Sun at distances ranging from ...
and Kuiper belt objects, which can bring catastrophe if knocked into the inner Solar System. While stellar crowding proves disadvantageous to habitability, so too does extreme isolation. A star as metal-rich as the Sun would probably not have formed in the very outermost regions of the Milky Way given a decline in the relative abundance of metals and a general lack of star formation. Thus, a "suburban" location, such as the Solar System enjoys, is preferable to a Galaxy's center or farthest reaches.


Other considerations


Alternative biochemistries

While most investigations of extraterrestrial life start with the assumption that advanced life-forms must have similar requirements for life as on Earth, the hypothesis of other types of biochemistry suggests the possibility of lifeforms evolving around a different metabolic mechanism. In '' Evolving the Alien'',
biologist A biologist is a scientist who conducts research in biology. Biologists are interested in studying life on Earth, whether it is an individual Cell (biology), cell, a multicellular organism, or a Community (ecology), community of Biological inter ...
Jack Cohen and
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History On ...
Ian Stewart argue astrobiology, based on the
Rare Earth hypothesis In planetary astronomy and astrobiology, the Rare Earth hypothesis argues that the origin of life and the evolution of biological complexity such as sexually reproducing, multicellular organisms on Earth (and, subsequently, human intelligenc ...
, is restrictive and unimaginative. They suggest that Earth-like planets may be very rare, but non-carbon-based complex life could possibly emerge in other environments. The most frequently mentioned alternative to carbon is silicon-based life, while
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
and
hydrocarbons In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or e ...
are sometimes suggested as alternative solvents to water. The astrobiologist Dirk Schulze-Makuch and other scientists have proposed a Planet Habitability Index whose criteria include "potential for holding a liquid solvent" that is not necessarily restricted to water. More speculative ideas have focused on bodies altogether different from Earth-like planets. Astronomer
Frank Drake Frank Donald Drake (May 28, 1930 – September 2, 2022) was an American astrophysicist and astrobiologist. He began his career as a radio astronomer, studying the planets of the Solar System and later pulsars. Drake expanded his interests ...
, a well-known proponent of the search for extraterrestrial life, imagined life on a
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
: submicroscopic "nuclear molecules" combining to form creatures with a life cycle millions of times quicker than Earth life. Called "imaginative and tongue-in-cheek", the idea gave rise to science fiction depictions. Carl Sagan, another optimist with regards to extraterrestrial life, considered the possibility of organisms that are always airborne within the high atmosphere of Jupiter in a 1976 paper. Cohen and Stewart also envisioned life in both a solar environment and in the atmosphere of a gas giant.


"Good Jupiters"

"Good Jupiters" are gas giants, like the Solar System's
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
, that orbit their stars in circular orbits far enough away from the habitable zone not to disturb it but close enough to "protect" terrestrial planets in closer orbit in two critical ways. First, they help to stabilize the orbits, and thereby the climates of the inner planets. Second, they keep the inner stellar system relatively free of comets and asteroids that could cause devastating impacts. Jupiter orbits the Sun at about five times the distance between the Earth and the Sun. This is the rough distance we should expect to find good Jupiters elsewhere. Jupiter's "caretaker" role was dramatically illustrated in 1994 when
Comet Shoemaker–Levy 9 Comet Shoemaker–Levy 9 ( formally designated D/1993 F2) broke apart in July 1992 and collided with Jupiter in July 1994, providing the first direct observation of an extraterrestrial collision of Solar System objects. This generated a ...
impacted the giant. However, the evidence is not quite so clear. Research has shown that Jupiter's role in determining the rate at which objects hit Earth is significantly more complicated than once thought. The role of Jupiter in the early history of the Solar System is somewhat better established, and the source of significantly less debate. Early in the Solar System's history, Jupiter is accepted as having played an important role in the hydration of our planet: it increased the eccentricity of
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, c ...
orbits and enabled many to cross Earth's orbit and supply the planet with important volatiles such as water and carbon dioxide. Before Earth reached half its present mass, icy bodies from the Jupiter–Saturn region and small bodies from the primordial asteroid belt supplied water to the Earth due to the gravitational scattering of Jupiter and, to a lesser extent, Saturn. Thus, while the gas giants are now helpful protectors, they were once suppliers of critical habitability material. In contrast, Jupiter-sized bodies that orbit too close to the habitable zone but not in it (as in
47 Ursae Majoris 47 Ursae Majoris (abbreviated 47 UMa), formally named Chalawan , is a yellow dwarf star approximately 46 light-years from Earth in the constellation of Ursa Major. , three extrasolar planets (designated 47 Ursae Majoris b, c and d; t ...
), or have a highly elliptical orbit that crosses the habitable zone (like 16 Cygni B) make it very difficult for an independent Earth-like planet to exist in the system. See the discussion of a stable habitable zone above. However, during the process of migrating into a habitable zone, a Jupiter-size planet may capture a terrestrial planet as a moon. Even if such a planet is initially loosely bound and following a strongly inclined orbit, gravitational interactions with the star can stabilize the new moon into a close, circular orbit that is coplanar with the planet's orbit around the star.


Life's impact on habitability

A supplement to the factors that support life's emergence is the notion that life itself, once formed, becomes a habitability factor in its own right. An important Earth example was the production of molecular oxygen gas () by ancient cyanobacteria, and eventually photosynthesizing plants, leading to a radical change in the composition of Earth's atmosphere. This environmental change is called the Great Oxygenation Event. This oxygen proved fundamental to the
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
of later animal species. The Gaia hypothesis, a scientific model of the geo-biosphere pioneered by James Lovelock in 1975, argues that life as a whole fosters and maintains suitable conditions for itself by helping to create a planetary environment suitable for its continuity. Similarly, David Grinspoon has suggested a "living worlds hypothesis" in which our understanding of what constitutes habitability cannot be separated from life already extant on a planet. Planets that are geologically and meteorologically alive are much more likely to be biologically alive as well and "a planet and its life will co-evolve." This is the basis of
Earth system science Earth system science (ESS) is the application of systems science to the Earth. In particular, it considers interactions and 'feedbacks', through material and energy fluxes, between the Earth's sub-systems' cycles, processes and "spheres"— atmo ...
.


The role of chance

In 2020 a computer simulation of the evolution of planetary climates over 3 billion years suggested that feedbacks are a necessary but not a sufficient condition for preventing planets from ever becoming too hot or cold for life, and that chance also plays a crucial role. Available unde
CC BY 4.0
Related considerations include yet unknown factors influencing the thermal habitability of planets such as "feedback mechanism (or mechanisms) that prevents the climate ever wandering to fatal temperatures".


See also

* * * * * * * * * * '' Habitable Planets for Man'' * * * * * *


Notes


References


Bibliography

*


Further reading

* Cohen, Jack and Ian Stewart. ''Evolving the Alien: The Science of Extraterrestrial Life'', Ebury Press, 2002. * * Fogg, Martyn J., ed. "Terraforming" (entire special issue) ''
Journal of the British Interplanetary Society The ''Journal of the British Interplanetary Society'' (''JBIS'') is a monthly peer-reviewed scientific journal that was established in 1934. The journal covers research on astronautics and space science and technology, including spacecraft design, ...
'', April 1991 * Fogg, Martyn J. ''Terraforming: Engineering Planetary Environments'', SAE International, 1995. * Gonzalez, Guillermo and Richards, Jay W. ''The Privileged Planet'', Regnery, 2004. * Grinspoon, David. ''Lonely Planets: The Natural Philosophy of Alien Life'', HarperCollins, 2004. * Lovelock, James. ''Gaia: A New Look at Life on Earth.'' * Schmidt, Stanley and Robert Zubrin, eds. ''Islands in the Sky'', Wiley, 1996. * Webb, Stephen ''If The Universe Is Teeming With Aliens ... Where Is Everybody? Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life'' New York: January 2002 Springer-Verlag


External links


Planetary Sciences and Habitability Group, Spanish Research Council

The Habitable Zone Gallery

Planetary Habitability Laboratory
(PHL/ UPR Arecibo)
The Habitable Exoplanets Catalog
(PHL/ UPR Arecibo)
David Darling encyclopedia

General interest astrobiology

Sol Station
{{DEFAULTSORT:Planetary Habitability Astrobiology Space colonization Exoplanetology Prebiotic chemistry de:Habitable Zone