HOME

TheInfoList



OR:

A piezoelectric accelerometer is an
accelerometer An accelerometer is a tool that measures proper acceleration. Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame; this is different from coordinate acceleration, which is acce ...
that employs the
piezoelectric effect Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word ''p ...
of certain materials to measure dynamic changes in mechanical variables (e.g., acceleration, vibration, and mechanical shock). As with all
transducer A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and cont ...
s, piezoelectrics convert one form of energy into another and provide an electrical signal in response to a quantity, property, or condition that is being measured. Using the general sensing method upon which all accelerometers are based, acceleration acts upon a seismic mass that is restrained by a spring or suspended on a cantilever beam, and converts a physical force into an electrical signal. Before the acceleration can be converted into an electrical quantity it must first be converted into either a
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
or
displacement Displacement may refer to: Physical sciences Mathematics and Physics * Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path ...
. This conversion is done via the mass spring system shown in the figure to the right.


Introduction

The word piezoelectric finds its roots in the Greek word ''piezein'', which means to squeeze or press. When a physical force is exerted on the accelerometer, the seismic mass loads the piezoelectric element according to
Newton's second law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
of motion (F=ma). The force exerted on the piezoelectric material can be observed in the change in the electrostatic force or voltage generated by the piezoelectric material. This differs from a
piezoresistive The piezoresistive effect is a change in the electrical resistivity of a semiconductor or metal when mechanical strain is applied. In contrast to the piezoelectric effect, the piezoresistive effect causes a change only in electrical resistanc ...
effect in that piezoresistive materials experience a change in the resistance of the material rather than a change in charge or voltage. Physical force exerted on the piezoelectric can be classified as one of two types; bending or compression. Stress of the compression type can be understood as a force exerted to one side of the piezoelectric while the opposing side rests against a fixed surface, while bending involves a force being exerted on the piezoelectric from both sides. Piezoelectric materials used for the purpose of accelerometers fall into two categories: single crystal and ceramic materials. The first and more widely used are single-crystal materials (usually quartz). Though these materials do offer a long life span in terms of sensitivity, their disadvantage is that they are generally less sensitive than some piezoelectric ceramics. The other category, ceramic materials, have a higher piezoelectric constant (sensitivity) than single-crystal materials, and are less expensive to produce. Ceramics use
barium titanate Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material th ...
, lead-zirconate-lead-titanate, lead metaniobate, and other materials whose composition is considered proprietary by the company responsible for their development. The disadvantage of piezoelectric ceramics, however, is that their sensitivity degrades with time making the longevity of the device less than that of single-crystal materials. In applications when low sensitivity piezoelectrics are used, two or more crystals can be connected together for output multiplication. The proper material can be chosen for particular applications based on the sensitivity,
frequency response In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. The frequency response is widely used in the design and analysis of s ...
, bulk-resistivity, and thermal response. Due to the low output signal and high
output impedance The output impedance of an electrical network is the measure of the opposition to current flow (impedance), both static ( resistance) and dynamic ( reactance), into the load network being connected that is ''internal'' to the electrical source. The ...
that piezoelectric accelerometers possess, there is a need for amplification and impedance conversion of the signal produced. In the past this problem has been solved using a separate (external)
amplifier An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It may increase the power significantly, or its main effect may be to boost th ...
/ impedance converter. This method, however, is generally impractical due to the
noise Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference aris ...
that is introduced as well as the physical and environmental constraints posed on the system as a result. Today IC amplifiers/impedance converters are commercially available and are generally packaged within the case of the accelerometer itself.


History

Behind the mystery of the operation of the piezoelectric accelerometer lie some very fundamental concepts governing the behavior of crystallographic structures. In 1880,
Pierre Pierre is a masculine given name. It is a French form of the name Peter. Pierre originally meant "rock" or "stone" in French (derived from the Greek word πέτρος (''petros'') meaning "stone, rock", via Latin "petra"). It is a translatio ...
and
Jacques Curie Jacques Curie (29 October 1855 – 19 February 1941) was a French physicist and professor of mineralogy at the University of Montpellier. Along with his younger brother, Pierre Curie, he studied pyroelectricity in the 1880s, leading to their di ...
published an experimental demonstration connecting mechanical stress and surface charge on a crystal. This phenomenon became known as the
piezoelectric effect Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word ''p ...
. Closely related to this phenomenon is the
Curie point In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Cur ...
, named for the physicist Pierre Curie, which is the temperature above which piezoelectric material loses spontaneous polarization of its atoms. The development of the commercial piezoelectric accelerometer came about through a number of attempts to find the most effective method to measure the vibration on large structures such as bridges and on vehicles in motion such as aircraft. One attempt involved using the resistance strain gage as a device to build an accelerometer. Incidentally, it was Hans J. Meier who, through his work at MIT, is given credit as the first to construct a commercial
strain gage A strain gauge (also spelled strain gage) is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which support ...
accelerometer (circa 1938).Patrick, Walter L. ''The History of the Accelerometer 1920s-1996 Prologue and Epilogue''. 2006. However, the strain gage accelerometers were fragile and could only produce low resonant frequencies and they also exhibited a low frequency response. These limitations in
dynamic range Dynamic range (abbreviated DR, DNR, or DYR) is the ratio between the largest and smallest values that a certain quantity can assume. It is often used in the context of signals, like sound and light. It is measured either as a ratio or as a base- ...
made it unsuitable for testing naval aircraft structures. On the other hand, the
piezoelectric sensor A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix ''piezo-'' is Greek for 'press' or 'squeeze' ...
was proven to be a much better choice over the strain gage in designing an accelerometer. The high
modulus of elasticity An elastic modulus (also known as modulus of elasticity) is the unit of measurement of an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. The elastic modulus of an object is ...
of piezoelectric materials makes the piezoelectric sensor a more viable solution to the problems identified with the strain gage accelerometer. Simply stated, the inherent properties of the piezoelectric accelerometers made it a much better alternative to the strain gage types because of its high frequency response, and its ability to generate high resonant frequencies. The piezoelectric accelerometer allowed for a reduction in its physical size at the manufacturing level and it also provided for a higher g (standard gravity) capability relative to the strain gage type. By comparison, the strain gage type exhibited a flat frequency response above 200 Hz while the piezoelectric type provided a flat response up to 10,000 Hz. These improvements made it possible for measuring the high frequency vibrations associated with the quick movements and short duration shocks of aircraft which before was not possible with the strain gage types. Before long, the technological benefits of the piezoelectric accelerometer became apparent and in the late 1940s, large scale production of piezoelectric accelerometers began. Today, piezoelectric accelerometers are used for instrumentation in the fields of engineering, health and medicine, aeronautics and many other different industries.


Manufacturing

There are two common methods used to manufacture accelerometers. One is based upon the principles of piezoresistance and the other is based on the principles of piezoelectricity. Both methods ensure that unwanted orthogonal acceleration vectors are excluded from detection. Manufacturing an accelerometer that uses piezoresistance first starts with a semiconductor layer that is attached to a handle wafer by a thick oxide layer. The semiconductor layer is then patterned to the accelerometer's geometry. This semiconductor layer has one or more apertures so that the underlying mass will have the corresponding apertures. Next the semiconductor layer is used as a mask to etch out a cavity in the underlying thick oxide. A mass in the cavity is supported in cantilever fashion by the piezoresistant arms of the semiconductor layer. Directly below the accelerometer's geometry is a flex cavity that allows the mass in the cavity to flex or move in direction that is orthogonal to the surface of the accelerometer. Accelerometers based upon piezoelectricity are constructed with two piezoelectric transducers. The unit consists of a hollow tube that is sealed by a piezoelectric transducer on each end. The transducers are oppositely polarized and are selected to have a specific series capacitance. The tube is then partially filled with a heavy liquid and the accelerometer is excited. While excited the total output voltage is continuously measured and the volume of the heavy liquid is microadjusted until the desired output voltage is obtained. Finally the outputs of the individual transducers are measured, the residual voltage difference is tabulated, and the dominate transducer is identified. In 1943 the Danish company Brüel & Kjær launched Type 4301 - the world's first charge accelerometer.


Applications of piezoelectric accelerometers

Piezoelectric accelerometers are used in many different industries, environments, and applications - all typically requiring measurement of short duration impulses. Piezoelectric measuring devices are widely used today in the laboratory, on the production floor, and as original equipment for measuring and recording dynamic changes in mechanical variables including shock and vibration. Some accelerometers have built-in electronics to amplify the signal before transmitting it to the recording device. This work was pioneered by PCB Piezotronics, released in 1967 as ICP®
Integrated circuit piezoelectric Integration may refer to: Biology *Multisensory integration *Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technology ...
, later evolving to be the IEPE standard (see Integrated Electronics Piezo-Electric). Other related, brand specific descriptors of IEPE are: CCLD, IsoTron or DeltaTron. Accelerometers also have had the addition of onboard memory to contain serial number and calibration data, typically referred to as TEDS
Transducer Electronic Data Sheet IEEE 1451 is a set of smart transducer interface standards developed by the Institute of Electrical and Electronics Engineers (IEEE) Instrumentation and Measurement Society's Sensor Technology Technical Committee describing a set of open, common ...
per the IEEE 1451 standard. http://www.pcb.com/resources/technical-information/teds


References

* Norton, Harry N.(1989). ''Handbook of Transducers''. ''Prentice Hall PTR''. {{ISBN, 0-13-382599-X}
'PDF Link'


External links


'Piezoelectric Tranducers'

'Piezoelectric Sensors'



'Access to Accels' - Tutorial about PE accelerometers
Piezoelectric materials Transducers Accelerometers