Photomorphogenesis
   HOME

TheInfoList



OR:

In
developmental biology Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of Regeneration (biology), regeneration, asexual reproduction, metamorphosis, and the growth and di ...
, photomorphogenesis is
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 tera ...
-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
where light is used as a source of energy. Phytochromes,
cryptochromes Cryptochromes (from the Greek κρυπτός χρώμα, "hidden colour") are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields i ...
, and phototropins are photochromic sensory receptors that restrict the photomorphogenic effect of light to the
UV-A Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
,
UV-B Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
, blue, and red portions of the electromagnetic spectrum. The photomorphogenesis of
plant Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclud ...
s is often studied by using tightly
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
-controlled
light source Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahe ...
s to grow the plants. There are at least three stages of plant development where photomorphogenesis occurs: seed germination, seedling development, and the switch from the vegetative to the flowering stage (
photoperiodism Photoperiodism is the physiological reaction of organisms to the length of night or a dark period. It occurs in plants and animals. Plant photoperiodism can also be defined as the developmental responses of plants to the relative lengths of light a ...
). Most research on photomorphogenesis is derived from plants studies involving several kingdoms:
Fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
,
Monera Monera (/məˈnɪərə/) (Greek - μονήρης (monḗrēs), "single", "solitary") is a biological kingdom that is made up of prokaryotes. As such, it is composed of single-celled organisms that lack a nucleus. The taxon Monera was first p ...
,
Protista A protist () is any eukaryotic organism (that is, an organism whose cells contain a cell nucleus) that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor (the last eukaryotic common ancestor), the excl ...
, and
Plantae Plants are predominantly Photosynthesis, photosynthetic eukaryotes of the Kingdom (biology), kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all curr ...
.


History

Theophrastus of Eresus (371 to 287 BC) may have been the first to write about photomorphogenesis. He described the different wood qualities of fir trees grown in different levels of light, likely the result of the photomorphogenic " shade-avoidance" effect. In 1686,
John Ray John Ray FRS (29 November 1627 – 17 January 1705) was a Christian English naturalist widely regarded as one of the earliest of the English parson-naturalists. Until 1670, he wrote his name as John Wray. From then on, he used 'Ray', after ...
wrote "Historia Plantarum" which mentioned the effects of
etiolation Etiolation is a process in flowering plants grown in partial or complete absence of light. It is characterized by long, weak stems; smaller leaves due to longer internodes; and a pale yellow color (chlorosis). The development of seedlings in t ...
(grow in the absence of light).
Charles Bonnet Charles Bonnet (; 13 March 1720 – 20 May 1793) was a Genevan naturalist and philosophical writer. He is responsible for coining the term ''phyllotaxis'' to describe the arrangement of leaves on a plant. He was among the first to notice parthe ...
introduced the term "etiolement" to the scientific literature in 1754 when describing his experiments, commenting that the term was already in use by gardeners.


Developmental stages affected


Seed germination

Light has profound effects on the development of plants. The most striking effects of light are observed when a
germinating Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, fern ...
seedling emerges from the soil and is exposed to light for the first time. Normally the seedling
radicle In botany, the radicle is the first part of a seedling (a growing plant embryo) to emerge from the seed during the process of germination. The radicle is the embryonic root of the plant, and grows downward in the soil (the shoot emerges from the ...
(root) emerges first from the seed, and the
shoot In botany, a plant shoot consists of any plant stem together with its appendages, leaves and lateral buds, flowering stems, and flower buds. The new growth from seed germination that grows upward is a shoot where leaves will develop. In the spri ...
appears as the root becomes established. Later, with growth of the shoot (particularly when it emerges into the light) there is increased secondary root formation and branching. In this coordinated progression of developmental responses are early manifestations of correlative growth phenomena where the root affects the growth of the shoot and vice versa. To a large degree, the growth responses are
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
mediated.


Seedling development

In the absence of light, plants develop an etiolated growth pattern.
Etiolation Etiolation is a process in flowering plants grown in partial or complete absence of light. It is characterized by long, weak stems; smaller leaves due to longer internodes; and a pale yellow color (chlorosis). The development of seedlings in t ...
of the seedling causes it to become elongated, which may facilitate it emerging from the soil. A seedling that emerges in darkness follows a developmental program known as skotomorphogenesis (dark development), which is characterized by etiolation. Upon exposure to light, the seedling switches rapidly to photomorphogenesis (light development). There are differences when comparing dark-grown (etiolated) and light-grown (de-etiolated) seedlings Etiolated characteristics: * Distinct
apical hook Apical means "pertaining to an apex". It may refer to: *Apical ancestor, refers to the last common ancestor of an entire group, such as a species (biology) or a clan (anthropology) *Apical (anatomy), an anatomical term of location for features loc ...
(dicot) or
coleoptile Coleoptile is the pointed protective sheath covering the emerging shoot in monocotyledons such as grasses in which few leaf primordia and shoot apex of monocot embryo remain enclosed. The coleoptile protects the first leaf as well as the growing ...
(monocot) * No leaf growth * No
chlorophyll Chlorophyll (also chlorophyl) is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words , ("pale green") and , ("leaf"). Chlorophyll allow plants to a ...
* Rapid stem elongation * Limited radial expansion of stem * Limited root elongation * Limited production of lateral roots De-etiolated characteristics: *
Apical hook Apical means "pertaining to an apex". It may refer to: *Apical ancestor, refers to the last common ancestor of an entire group, such as a species (biology) or a clan (anthropology) *Apical (anatomy), an anatomical term of location for features loc ...
opens or
coleoptile Coleoptile is the pointed protective sheath covering the emerging shoot in monocotyledons such as grasses in which few leaf primordia and shoot apex of monocot embryo remain enclosed. The coleoptile protects the first leaf as well as the growing ...
splits open * Leaf growth promoted *
Chlorophyll Chlorophyll (also chlorophyl) is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words , ("pale green") and , ("leaf"). Chlorophyll allow plants to a ...
produced * Stem elongation suppressed * Radial expansion of stem * Root elongation promoted * Lateral root development accelerated The developmental changes characteristic of photomorphogenesis shown by de-etiolated seedlings, are induced by light.


Photoperiodism

Some plants rely on light signals to determine when to switch from the vegetative to the flowering stage of plant development. This type of photomorphogenesis is known as
photoperiodism Photoperiodism is the physiological reaction of organisms to the length of night or a dark period. It occurs in plants and animals. Plant photoperiodism can also be defined as the developmental responses of plants to the relative lengths of light a ...
and involves using red photoreceptors (phytochromes) to determine the daylength. As a result, photoperiodic plants only start making flowers when the days have reached a "critical daylength," allowing these plants to initiate their flowering period according to the time of year. For example, "long day" plants need long days to start flowering, and "short day" plants need to experience short days before they will start making flowers. Photoperiodism also has an effect on vegetative growth, including on bud dormancy in perennial plants, though this is not as well-documented as the effect of photoperiodism on the switch to the flowering stage.


Light receptors for photomorphogenesis

Typically, plants are responsive to wavelengths of light in the blue, red and far-red regions of the spectrum through the action of several different photosensory systems. The photoreceptors for red and far-red wavelengths are known as
phytochrome Phytochromes are a class of photoreceptor in plants, bacteria and fungi used to detect light. They are sensitive to light in the red and far-red region of the visible spectrum and can be classed as either Type I, which are activated by far-re ...
s. There are at least 5 members of the phytochrome family of photoreceptors. There are several blue light photoreceptors known as
cryptochrome Cryptochromes (from the Greek κρυπτός χρώμα, "hidden colour") are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields i ...
s. The combination of phytochromes and cryptochromes mediate growth and the flowering of plants in response to red light, far-red light, and blue light.


Red/far-red light

Plants use
phytochrome Phytochromes are a class of photoreceptor in plants, bacteria and fungi used to detect light. They are sensitive to light in the red and far-red region of the visible spectrum and can be classed as either Type I, which are activated by far-re ...
to detect and respond to red and far-red wavelengths. Phytochromes are signaling proteins that promote photomorphogenesis in response to red light and far-red light. Phytochrome is the only known photoreceptor that absorbs light in the red/far red spectrum of light (600-750 nm) specifically and only for photosensory purposes. Phytochromes are proteins with a light absorbing pigment attached called a
chromophore A chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is the one not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the molec ...
. The chromophore is a linear tetrapyrrole called phytochromobilin. There are two forms of phytochromes: red light absorbing, Pr, and far-red light absorbing, Pfr. Pfr, which is the active form of phytochromes, can be reverted to Pr, which is the inactive form, slowly by inducing darkness or more rapidly by irradiation by far-red light. The phytochrome apoprotein, a protein that together with a prosthetic group forms a particular biochemical molecule such as a
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
or
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
, is synthesized in the Pr form. Upon binding the chromophore, the
holoprotein A holoprotein or conjugated protein is an apoprotein combined with its prosthetic group. Some enzymes do not need additional components to show full activity. Others require non-protein molecules called cofactors to be bound for activity. Cofact ...
, an apoprotein combined with its prosthetic group, becomes sensitive to light. If it absorbs red light it will change conformation to the biologically active Pfr form. The Pfr form can absorb far red light and switch back to the Pr form. The Pfr promotes and regulates photomorphogenesis in response to FR light, whereas Pr regulates de-etiolation in response to R light. Most plants have multiple phytochromes encoded by different
genes In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
. The different forms of phytochrome control different responses but there is also redundancy so that in the absence of one phytochrome, another may take on the missing functions. There are five genes that encode phytochromes in the ''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. ''A. thaliana'' is considered a weed; it is found along the shoulders of roads and in disturbed land. A winter a ...
'' genetic model, ''PHYA-PHYE''. PHYA is involved in the regulation of photomorphogenesis in response to far-red light. PHYB is involved in regulating photoreversible seed germination in response to red light. PHYC mediates the response between PHYA and PHYB. PHYD and PHYE mediate elongation of the internode and control the time in which the plant flowers. Molecular analyses of phytochrome and phytochrome-like genes in
higher plants Vascular plants (), also called tracheophytes () or collectively Tracheophyta (), form a large group of land plants ( accepted known species) that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They al ...
(ferns, mosses, algae) and photosynthetic bacteria have shown that phytochromes evolved from
prokaryotic A prokaryote () is a Unicellular organism, single-celled organism that lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek language, Greek wikt:πρό#Ancient Greek, πρό (, 'before') a ...
photoreceptors that predated the origin of plants. Takuma Tanada observed that the root tips of
barley Barley (''Hordeum vulgare''), a member of the grass family, is a major cereal grain grown in temperate climates globally. It was one of the first cultivated grains, particularly in Eurasia as early as 10,000 years ago. Globally 70% of barley pr ...
adhered to the sides of a beaker with a negatively charged surface after being treated with red light, yet released after being exposed to far-red light. For
mung bean The mung bean (''Vigna radiata''), alternatively known as the green gram, maash ( fa, ماش٫ )٫ mūng (), monggo, or munggo (Philippines), is a plant species in the legume family.Brief Introduction of Mung Bean. Vigna Radiata Extract G ...
it was the opposite, where far-red light exposure caused the root tips to adhere, and red light caused the roots to detach. This effect of red and far-red light on root tips is now known as the
Tanada effect The Tanada effect refers to the adhesion of root tips to glass surfaces. It is believed to involve electric potentials. It is named for the scientist who first described the effect, Takuma Tanada. The phenomenon was observed while Dr. Tanada was r ...
.


Blue light

Plants contain multiple blue light photoreceptors which have different functions. Based on studies with action spectra,
mutants In biology, and especially in genetics, a mutant is an organism or a new genetic character arising or resulting from an instance of mutation, which is generally an alteration of the DNA sequence of the genome or chromosome of an organism. It ...
and molecular analyses, it has been determined that higher plants contain at least 4, and probably 5, different blue light photoreceptors.
Cryptochromes Cryptochromes (from the Greek κρυπτός χρώμα, "hidden colour") are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields i ...
were the first blue light receptors to be isolated and characterized from any organism, and are responsible for the blue light reactions in photomorphogenesis. The proteins use a flavin as a chromophore. The cryptochromes have evolved from microbial DNA-
photolyase Photolyases () are DNA repair enzymes that repair damage caused by exposure to ultraviolet light. These enzymes require visible light (from the violet/blue end of the spectrum) both for their own activation and for the actual DNA repair. The DN ...
, an enzyme that carries out light-dependent repair of UV damaged DNA. There are two different forms of cryptochromes that have been identified in plants, CRY1 and CRY2, which regulate the inhibition of hypocotyl elongation in response to blue light. Cryptochromes control stem elongation, leaf expansion, circadian rhythms and flowering time. In addition to blue light, cryptochromes also perceive long wavelength UV irradiation (UV-A). Since the cryptochromes were discovered in plants, several labs have identified homologous genes and photoreceptors in a number of other organisms, including humans, mice and flies. There are blue light photoreceptors that are not a part of photomorphogenesis. For example,
phototropin Phototropins are photoreceptor proteins (more specifically, flavoproteins) that mediate phototropism responses in higher plants. Phototropins can be found throughout the leaves of a plant. Along with cryptochromes and phytochromes they allow plants ...
is the blue light photoreceptor that controls
phototropism Phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hor ...
.


UV light

Plants show various responses to UV light.
UVR8 UV-B resistance 8 (UVR8) also known as ultraviolet-B receptor UVR8 is an UV-B – sensing protein found in plants and possibly other sources. * It is responsible for sensing ultraviolet light in the range 280-315 nm and initiating the plant ...
has been shown to be a UV-B receptor. Plants undergo distinct photomorphogenic changes as a result of
UV-B Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
radiation. They have photoreceptors that initiate morphogenetic changes in the plant embryo (
hypocotyl The hypocotyl (short for "hypocotyledonous stem", meaning "below seed leaf") is the stem of a germinating seedling, found below the cotyledons (seed leaves) and above the radicle (root). Eudicots As the plant embryo grows at germination, it send ...
,
epicotyl An epicotyl is important for the beginning stages of a plant's life. It is the region of a seedling stem above the stalks of the seed leaves of an embryo plant. It grows rapidly, showing hypogeal germination, and extends the stem above the soil surf ...
,
radicle In botany, the radicle is the first part of a seedling (a growing plant embryo) to emerge from the seed during the process of germination. The radicle is the embryonic root of the plant, and grows downward in the soil (the shoot emerges from the ...
) Exposure to UV- light in plants mediates biochemical pathways, photosynthesis, plant growth and many other processes essential to plant development. The UV-B photoreceptor, UV Resistance Locus8 (UVR8) detects UV-B rays and elicits photomorphogenic responses. These response are important for initiating hypocotyl elongation, leaf expansion, biosynthesis of flavonoids and many other important processes that affect the root-shoot system. Exposure to UV-B rays can be damaging to DNA inside of the plant cells, however, UVR8 induces genes required to acclimate plants to UV-B radiation, these genes are responsible for many biosynthesis pathways that involve protection from UV damage, oxidative stress, and photorepair of DNA damage. There is still much to be discovered about the mechanisms involved in UV-B radiation and UVR8. Scientists are working to understand the pathways responsible for plant UV receptors response to solar radiation in natural environments.


References


External links

*{{url , http://photobiology.info/#Photomorph , Photobiological Sciences Online. Resources available from the American Society for Photobiology Plant development