HOME

TheInfoList



OR:

Pervaporation (or pervaporative separation) is a processing method for the separation of mixtures of liquids by partial
vaporization Vaporization (or vaporisation) of an element or compound is a phase transition from the liquid phase to vapor. There are two types of vaporization: evaporation and boiling. Evaporation is a surface phenomenon, whereas boiling is a bulk phenomeno ...
through a non-porous or porous membrane.


Theory

The term ''pervaporation'' is a portmanteau of the two steps of the process: (a)
permeation In physics and engineering, permeation (also called imbuing) is the penetration of a permeate (a fluid such as a liquid, gas, or vapor) through a solid. It is directly related to the concentration gradient of the permeate, a material's intrins ...
through the membrane by the permeate, then (b) its
evaporation Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. High concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when h ...
into the vapor phase. This process is used by a number of industries for several different processes, including purification and
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384 ...
, due to its simplicity and in-line nature. The membrane acts as a selective barrier between the two phases: the liquid-phase feed and the vapor-phase permeate. It allows the desired components of the liquid feed to transfer through it by
vaporization Vaporization (or vaporisation) of an element or compound is a phase transition from the liquid phase to vapor. There are two types of vaporization: evaporation and boiling. Evaporation is a surface phenomenon, whereas boiling is a bulk phenomeno ...
. Separation of components is based on a difference in transport rate of individual components through the membrane. Typically, the upstream side of the membrane is at ambient pressure and the downstream side is under vacuum to allow the evaporation of the selective component after permeation through the membrane. Driving force for the separation is the difference in the
partial pressures In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas ...
of the components on the two sides and not the volatility difference of the components in the feed. The driving force for transport of different components is provided by a chemical potential difference between the liquid feed/retentate and vapor permeate at each side of the membrane. The retentate is the remainder of the feed leaving the membrane feed chamber, which is not permeated through the membrane. The chemical potential can be expressed in terms of
fugacity In chemical thermodynamics, the fugacity of a real gas is an effective partial pressure which replaces the mechanical partial pressure in an accurate computation of the chemical equilibrium constant. It is equal to the pressure of an ideal gas whi ...
, given by Raoult's law for a liquid and by
Dalton's law Dalton's law (also called Dalton's law of partial pressures) states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases. This empirical law was observed by Jo ...
for (an ideal) gas. During operation, due to removal of the vapor-phase permeate, the actual fugacity of the vapor is lower than anticipated on basis of the collected (condensed) permeate. Separation of components (''e.g.'' water and ethanol) is based on a difference in transport rate of individual components through the membrane. This transport mechanism can be described using the solution-diffusion model, based on the rate/ degree of dissolution of a component into the membrane and its velocity of transport (expressed in terms of diffusivity) through the membrane, which will be different for each component and membrane type leading to separation.


Applications

Pervaporation is effective for dilute solutions containing trace or minor amounts of the component to be removed. Based on this,
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are no ...
membranes are used for dehydration of alcohols containing small amounts of water and
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, t ...
membranes are used for removal/recovery of trace amounts of organics from
aqueous An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be r ...
solutions. Pervaporation is an efficient energy conserving alternative to processes such as
distillation Distillation, or classical distillation, is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation, usually inside an apparatus known as a still. Dry distillation is the heatin ...
and
evaporation Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. High concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when h ...
. It allows the exchange of two phases without direct contact. Examples include solvent dehydration: dehydrating the ethanol/water and isopropanol/water azeotropes, continuous ethanol removal from yeast fermentors, continuous water removal from condensation reactions such as
esterification In chemistry, an ester is a compound derived from an oxoacid (organic or inorganic) in which at least one hydroxyl group () is replaced by an alkoxy group (), as in the substitution reaction of a carboxylic acid and an alcohol. Glycerides are ...
s to enhance conversion and rate of the reaction, membrane introduction mass spectrometry, removing organic solvents from industrial waste waters, combination of distillation and pervaporation/vapour permeation, and concentration of hydrophobic flavour compounds in aqueous solutions (using hydrophobic membranes). Recently, a number of organophilic pervaporation membranes have been introduced to the market. Organophilic pervaporation membranes can be used for the separation of organic-organic mixtures, e.g.: reduction of the
aromatics Aromatic compounds, also known as "mono- and polycyclic aromatic hydrocarbons", are organic compounds containing one or more aromatic rings. The parent member of aromatic compounds is benzene. The word "aromatic" originates from the past grouping ...
content in refinery streams, breaking of
azeotrope An azeotrope () or a constant heating point mixture is a mixture of two or more liquids whose proportions cannot be altered or changed by simple distillation.Moore, Walter J. ''Physical Chemistry'', 3rd e Prentice-Hall 1962, pp. 140–142 This ...
s, purification of extraction media, purification of product stream after extraction, and purification of organic solvents.


Materials

Hydrophobic membranes are often
polydimethylsiloxane Polydimethylsiloxane (PDMS), also known as dimethylpolysiloxane or dimethicone, belongs to a group of polymeric organosilicon compounds that are commonly referred to as silicones. PDMS is the most widely used silicon-based organic polymer, as it ...
based where the actual separation mechanism is based on the solution-diffusion model described above. Hydrophilic membranes are more widely available. The commercially most successful pervaporation membrane system to date is based on
polyvinyl alcohol Poly(vinyl alcohol) (PVOH, PVA, or PVAl) is a water-soluble synthetic polymer. It has the idealized formula H2CH(OH)sub>''n''. It is used in papermaking, textile warp sizing, as a thickener and emulsion stabilizer in polyvinyl acetate (PVAc) ad ...
. More recently also membranes based on
polyimide Polyimide (sometimes abbreviated PI) is a polymer containing imide groups belonging to the class of high-performance plastics. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, e.g ...
have become available. To overcome the intrinsic disadvantages of polymeric membrane systems ceramic membranes have been developed over the last decade. These ceramic membranes consist of nanoporous layers on top of a macroporous support. The pores must be large enough to let water molecules pass through and retain any other solvents that have a larger molecular size such as ethanol. As a result, a
molecular sieve A molecular sieve is a material with pores (very small holes) of uniform size. These pore diameters are similar in size to small molecules, and thus large molecules cannot enter or be adsorbed, while smaller molecules can. As a mixture of molec ...
with a pore size of about 4 Å is obtained. The most widely available member of this class of membranes is that based on
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
A. Alternatively to these crystalline materials, the porous structure of
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek ''a'' ("wi ...
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
layers can be tailored towards molecular selectivity. These membranes are fabricated by sol-gel chemical processes. Research into novel hydrophilic ceramic membranes has been focused on titania or
zirconia Zirconium dioxide (), sometimes known as zirconia (not to be confused with zircon), is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabi ...
. Very recently a break-through in hydrothermal stability has been achieved through the development of an organic-inorganic hybrid material.


See also

*
Mass transfer Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtrati ...


References


Further reading

* * * {{cite journal , last1=Eslami , first1=Shahabedin , last2=Aroujalian , first2=Abdolreza , last3=Bonakdarpour , first3=Babak , last4=Raeesi , first4=Ahamdreza , year=2008 , title=Coupling of Pervaporation system with Fermentation Process , journal= International Congress on Membrane and Membrane Technology (ICOM2008) Honolulu, Hawaii, USA , url=http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecce6_sep07/upload/2454.pdf Analytical chemistry Membrane technology