HOME

TheInfoList



OR:

Pyocins are
bacteriocin Bacteriocins are proteinaceous or peptidic toxins produced by bacteria to inhibit the growth of similar or closely related bacterial strain(s). They are similar to yeast and paramecium killing factors, and are structurally, functionally, and ec ...
s produced by
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
belonging to the ''
Pseudomonas ''Pseudomonas'' is a genus of Gram-negative, Gammaproteobacteria, belonging to the family Pseudomonadaceae and containing 191 described species. The members of the genus demonstrate a great deal of metabolic diversity and consequently are able ...
'' genus.
François Jacob François Jacob (17 June 1920 – 19 April 2013) was a French biologist who, together with Jacques Monod, originated the idea that control of enzyme levels in all cells occurs through regulation of transcription. He shared the 1965 Nobel Prize i ...
described the first pyocin in 1954. Pyocins can be divided into three distinct classes: S-type, R-type, and F-type pyocins. S-type pyocins are colicin-like bacteriocins as R-type and F-type pyocins belong to tailocins.


S-type pyocins

S-type (soluble) pyocins are binary protein complexes that compose of a cytotoxic protein and an immunity protein that protects the producing strain from cytotoxic effects. The amino-terminal domain of the protein takes part in receptor binding as the carboxy-terminal domain is responsible for cytotoxic effect. Most S-type pyocins act by degrading DNA and RNA but some exhibit their cytotoxicity by forming pores to cell surface or by lipid degradation. Several S-type pyocins have been found so far: S1, S2, AP41, S3, S4, S5, S6. Pyocin G is an example of a novel S1-type nuclease pyocin. It binds to hemin uptake receptor Hur on target cell surface and translocates to the cytoplasm where it degrades DNA. Pyocin G uses inner membrane proteins TonB1 and FtsH for translocation. Pyocin G is highly active against ''P.aeruginosa'' clinical isolates ''in vitro'' as well as ''in vivo'' and could be active in ''P.aeruginosa'' infections also in humans In silico methods are revealing also new types of S-pyocins when large databases of sequenced DNA from ''Pseudomonas''-genus are being screened for new pyocin coding sequences.


R-type and F-type pyocins

R- and F-type pyocins have been mainly investigated in ''P.aeruginosa''. These two types differ by their structure; they are both composed of a sheath and a hollow tube forming a long helicoidal hexameric structure attached to a baseplate. There are multiple tail fibers that allow the particle to bind to the target cell. However, the R-pyocins are a large, rigid contractile tail-like structure whereas the F-pyocins are small flexible, non-contractile tail-like structures. To date five subgroups of R-type pyocins have been discovered: R1 to R5. F-type pyocins discovered so far are pyocin 28, 430f, F1, F2, and F3.


References

{{reflist Bacteriocins