Pulsar Kicks
   HOME

TheInfoList



OR:

A pulsar kick is the name of the phenomenon that often causes a
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
to move with a different, usually substantially greater,
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
than its progenitor star. The cause of pulsar kicks is unknown, but many astrophysicists believe that it must be due to an asymmetry in the way a supernova explodes. If true, this would give information about the supernova mechanism.


Observation

It is generally accepted today that the average pulsar kick ranges from 200–500 km/s. However, some pulsars have a much greater velocity. For example, the hypervelocity star B1508+55 has been reported to have a speed of 1100 km/s and a
trajectory A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete tra ...
leading it out of the galaxy. An extremely convincing example of a pulsar kick can be seen in the Guitar Nebula, where the
bow shock In astrophysics, a bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of th ...
generated by the pulsar moving relative to the supernova remnant nebula has been observed and confirms a velocity of 800 km/s. Of particular interest is whether the magnitude or direction of the pulsar kick has any correlation with other properties of the pulsar, such as the spin axis,
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagne ...
, or magnetic field strength. To date, no correlation has been found between the magnetic field strength and the magnitude of the kick. However, there is some contention over whether a correlation between spin axis and kick direction has been observed. For many years, it was believed that no correlation existed. In studies of the Vela and Crab pulsars, jets have been observed which are believed to align with the spin axis of the pulsar. Since these jets align very closely with the bow shock as well as the directly measured velocity of the pulsars, this is considered strong evidence that these pulsars have kicks aligned with their spin axis. It is also possible to measure the spin axis of a pulsar using the polarization of its radiation, and a recent study of 24 pulsars has found a strong correlation between the polarization and kick direction. Such studies have always been fraught with difficulty, however, since uncertainties associated with the polarization measurement are very large, making correlation studies troublesome. There is a possibility that the distribution of kick speeds is
bimodal In statistics, a multimodal distribution is a probability distribution with more than one mode. These appear as distinct peaks (local maxima) in the probability density function, as shown in Figures 1 and 2. Categorical, continuous, and d ...
. Strong evidence for this possibility comes from the "neutron star retention problem". Most
globular clusters A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of membe ...
in the Milky Way have an
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
under 50 km/s, so that few pulsars should have any difficulty in escaping. In fact, with the directly measured distribution of kick velocities, we would expect less than 1% of all pulsars born in a globular cluster to remain. But this is not the case—globular clusters contain many pulsars, some in excess of 1000. The number can be improved somewhat if one allows a fraction of the kick momentum to be transferred to a
binary Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that ta ...
partner. In this case, perhaps 6% ought to survive, but this is not sufficient to explain the discrepancy. This appears to imply that some large set of pulsars receive virtually no kick at all while others receive a very large kick. It would be difficult to see this bimodal distribution directly because many speed measurement schemes only put an upper limit on the object's speed. If it is true that some pulsars receive very little kick, this might give us insight into the mechanism for pulsar kicks, since a complete explanation would have to predict this possibility.


Theories

Many hydrodynamical theories have been proposed, all of which attempt to explain the asymmetry in supernova using convection or mechanical instabilities in the presupernova star. Perhaps the easiest to understand is the "overstable g-mode". In this theory, we first assume that the core is pushed slightly to one side, off center from the star. This increases the
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
in the nearby
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
shells of the star. Since the rate of nuclear reactions in these shells is very sensitively dependent on pressure, the added pressure results in a large release of energy, and the core is pushed back the other way. This in turn adds greater pressure on the other side, and we find that the core begins to
oscillate Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
. It has been shown that many such modes are overstable in heavy stars, that is, a small
perturbation Perturbation or perturb may refer to: * Perturbation theory, mathematical methods that give approximate solutions to problems that cannot be solved exactly * Perturbation (geology), changes in the nature of alluvial deposits over time * Perturbat ...
becomes large over time. When the star explodes, the core has additional momentum in some direction, which we observe as the kick. It has been proposed that hydrodynamical models can explain the bimodal distribution, through a "
dichotomous A dichotomy is a partition of a whole (or a set) into two parts (subsets). In other words, this couple of parts must be * jointly exhaustive: everything must belong to one part or the other, and * mutually exclusive: nothing can belong simult ...
kick scenario" in which the envelope of the presupernova star is stolen by a binary companion, dampening mechanical instabilities and thus reducing the resulting kick. There are two main
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
driven kick scenarios, relying on the parity violation of neutrino interactions to explain an asymmetry in neutrino distribution. The first uses the fact that in the presence of a magnetic field, the direction that a neutrino is scattered off a
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom * Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
is biased in some direction. So if neutrino emission happened in the presence of a strong magnetic field, we might expect the average neutrino drift to align in some way with that field, and thus the resulting explosion would be asymmetric. A main problem with this theory is that to have sufficient asymmetry the theory requires fields of order 1015 G, much stronger than is expected in a heavy star. Another neutrino based theory uses the fact that the
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
for neutrino scattering depends weakly on the strength of the ambient magnetic field. Thus, if the magnetic field is itself anisotropic, then there could be dark spots which are essentially
opaque Opacity or opaque may refer to: * Impediments to (especially, visible) light: ** Opacities, absorption coefficients ** Opacity (optics), property or degree of blocking the transmission of light * Metaphors derived from literal optics: ** In lingu ...
to neutrinos. This however requires anisotropies of order 1016 G, which is even more unlikely. The final main proposal is known as the electromagnetic rocket scenario. In this theory, we assume the pulsar's
magnetic dipole In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the electric ...
to be offcenter and offaxis from the pulsar's spin axis. This results in an asymmetry in the magnitude of the dipole oscillations, as seen from above and below, which in turn means an asymmetry in the emission of radiation. The
radiation pressure Radiation pressure is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is a ...
then slowly rockets the pulsar away. Notice that this is a postnatal kick, and has nothing to do with asymmetries in the supernova itself. Also notice that this process steals energy from the pulsar's spin, and so a main observational constraint on the theory is the observed rate of rotation for pulsar's throughout the galaxy. A major bonus to this theory is that it actually predicts the spin-kick correlation. However, there is some contention as to whether this can generate sufficient energy to explain the full range of kick velocities.


Black hole kicks

The large distances above the
galactic plane The galactic plane is the plane on which the majority of a disk-shaped galaxy's mass lies. The directions perpendicular to the galactic plane point to the galactic poles. In actual usage, the terms ''galactic plane'' and ''galactic poles'' usual ...
achieved by some
binaries A binary file is a computer file that is not a text file. The term "binary file" is often used as a term meaning "non-text file". Many binary file formats contain parts that can be interpreted as text; for example, some computer document fil ...
are the result of stellar black hole natal kicks. The velocity distribution of black hole natal kicks seems similar to that of neutron-star kick velocities. One might have expected that it would be the momenta that were the same with black holes receiving lower velocity than neutron stars due to their higher mass but that does not seem to be the case.


References


Bibliography

* * * * *


External links

* * {{neutron star Pulsars