In
differential geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a
differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
with a
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
that is everywhere
nondegenerate
In mathematics, a degenerate case is a limiting case of a class of objects which appears to be qualitatively different from (and usually simpler than) the rest of the class, and the term degeneracy is the condition of being a degenerate case.
T ...
. This is a generalization of a
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
in which the requirement of
positive-definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular:
* Positive-definite bilinear form
* Positive-definite fu ...
ness is relaxed.
Every
tangent space
In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
of a pseudo-Riemannian manifold is a
pseudo-Euclidean vector space In mathematics and theoretical physics, a pseudo-Euclidean space is a finite- dimensional real -space together with a non-degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vector , giving
q( ...
.
A special case used in
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
is a four-dimensional Lorentzian manifold for modeling
spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
, where tangent vectors can be classified as
timelike, null, and spacelike.
Introduction
Manifolds
In
differential geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, a
differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
is a space which is locally similar to a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the
coordinate
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
s of the point.
An ''n''-dimensional differentiable manifold is a generalisation of ''n''-dimensional Euclidean space. In a manifold it may only be possible to define coordinates ''locally''. This is achieved by defining
coordinate patch
In mathematics, particularly topology, one describes a manifold using an atlas. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an ...
es: subsets of the manifold which can be mapped into ''n''-dimensional Euclidean space.
See ''
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
'', ''
Differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
'', ''
Coordinate patch
In mathematics, particularly topology, one describes a manifold using an atlas. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an ...
'' for more details.
Tangent spaces and metric tensors
Associated with each point
in an
-dimensional differentiable manifold
is a
tangent space
In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
(denoted
). This is an
-dimensional
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
whose elements can be thought of as
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
es of curves passing through the point
.
A
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
is a
non-degenerate
In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent defin ...
, smooth, symmetric,
bilinear map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.
Definition
Vector spaces
Let V, W ...
that assigns a
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
to pairs of tangent vectors at each tangent space of the manifold. Denoting the metric tensor by
we can express this as
:
The map is symmetric and bilinear so if
are tangent vectors at a point
to the manifold
then we have
*
*
for any real number
.
That
is
non-degenerate
In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent defin ...
means there is no non-zero
such that
for all
.
Metric signatures
Given a metric tensor ''g'' on an ''n''-dimensional real manifold, the
quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example,
:4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong to a ...
associated with the metric tensor applied to each vector of any
orthogonal basis In mathematics, particularly linear algebra, an orthogonal basis for an inner product space V is a basis for V whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized, the resulting basis is an orthonormal basi ...
produces ''n'' real values. By
Sylvester's law of inertia
Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of basis. Namely, if ''A'' is the symmetric matrix that defines the quadra ...
, the number of each positive, negative and zero values produced in this manner are invariants of the metric tensor, independent of the choice of orthogonal basis. The
signature
A signature (; from la, signare, "to sign") is a handwritten (and often stylized) depiction of someone's name, nickname, or even a simple "X" or other mark that a person writes on documents as a proof of identity and intent. The writer of a ...
of the metric tensor gives these numbers, shown in the same order. A non-degenerate metric tensor has and the signature may be denoted (''p'', ''q''), where .
Definition
A pseudo-Riemannian manifold
is a
differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
equipped with an everywhere non-degenerate, smooth, symmetric
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
.
Such a metric is called a pseudo-Riemannian metric. Applied to a vector field, the resulting scalar field value at any point of the manifold can be positive, negative or zero.
The signature of a pseudo-Riemannian metric is , where both ''p'' and ''q'' are non-negative. The non-degeneracy condition together with continuity implies that ''p'' and ''q'' remain unchanged throughout the manifold (assuming it is connected).
Properties of pseudo-Riemannian manifolds
Just as
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
can be thought of as the model
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
,
Minkowski space
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inerti ...
with the flat
Minkowski metric
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of Three-dimensional space, three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two Event (rel ...
is the model Lorentzian manifold. Likewise, the model space for a pseudo-Riemannian manifold of signature (
p,
q) is
with the metric
:
Some basic theorems of Riemannian geometry can be generalized to the pseudo-Riemannian case. In particular, the
fundamental theorem of Riemannian geometry
In the mathematical field of Riemannian geometry, the fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo-Riemannian manifold) there is a unique affine connection that is torsion-free and metric-compatible ...
is true of pseudo-Riemannian manifolds as well. This allows one to speak of the
Levi-Civita connection on a pseudo-Riemannian manifold along with the associated
curvature tensor. On the other hand, there are many theorems in Riemannian geometry which do not hold in the generalized case. For example, it is ''not'' true that every smooth manifold admits a pseudo-Riemannian metric of a given signature; there are certain
topological
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
obstructions. Furthermore, a
submanifold
In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which ...
does not always inherit the structure of a pseudo-Riemannian manifold; for example, the metric tensor becomes zero on any
light-like
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight.
Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
. The
Clifton–Pohl torus In geometry, the Clifton–Pohl torus is an example of a compact Lorentzian manifold that is not geodesically complete. While every compact Riemannian manifold is also geodesically complete (by the Hopf–Rinow theorem), this space shows that the ...
provides an example of a pseudo-Riemannian manifold that is compact but not complete, a combination of properties that the
Hopf–Rinow theorem
Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem ...
disallows for Riemannian manifolds.
[, p. 193.]
Lorentzian manifold
A Lorentzian manifold is an important special case of a pseudo-Riemannian manifold in which the
signature of the metric is (equivalently, ; see ''
Sign convention
In physics, a sign convention is a choice of the physical significance of signs (plus or minus) for a set of quantities, in a case where the choice of sign is arbitrary. "Arbitrary" here means that the same physical system can be correctly describ ...
''). Such metrics are called Lorentzian metrics. They are named after the Dutch physicist
Hendrik Lorentz
Hendrik Antoon Lorentz (; 18 July 1853 – 4 February 1928) was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect. He also derived the Lorentz t ...
.
Applications in physics
After Riemannian manifolds, Lorentzian manifolds form the most important subclass of pseudo-Riemannian manifolds. They are important in applications of
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
.
A principal premise of general relativity is that
spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
can be modeled as a 4-dimensional Lorentzian manifold of signature or, equivalently, . Unlike Riemannian manifolds with positive-definite metrics, an indefinite signature allows tangent vectors to be classified into ''timelike'', ''null'' or ''spacelike''. With a signature of or , the manifold is also locally (and possibly globally) time-orientable (see ''
Causal structure
In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.
Introduction
In modern physics (especially general relativity) spacetime is represented by a Lorentzian ma ...
'').
See also
*
Causality conditions
In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970 ...
*
Globally hyperbolic manifold
In mathematical physics, global hyperbolicity is a certain condition on the causal structure of a spacetime manifold (that is, a Lorentzian manifold). It's called hyperbolic because the fundamental condition that generates the Lorentzian manifol ...
*
Hyperbolic partial differential equation
In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n-1 derivatives. More precisely, the Cauchy problem can be ...
*
Orientable manifold
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
*
Spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
Notes
References
*
*
*
*
*.
External links
*
{{Riemannian geometry
Bernhard Riemann
Differential geometry
*
Riemannian geometry
Riemannian manifolds
Smooth manifolds