HOME

TheInfoList



OR:

Proximity effect or Holm–Meissner effect is a term used in the field of
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
to describe phenomena that occur when a superconductor (S) is placed in contact with a "normal" (N) non-superconductor. Typically the
critical temperature Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine *Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in ...
T_ of the superconductor is suppressed and signs of weak superconductivity are observed in the normal material over mesoscopic distances. The proximity effect is known since the pioneering work by R. Holm and W. Meissner. They have observed zero resistance in SNS pressed contacts, in which two superconducting metals are separated by a thin film of a non-superconducting (i.e. normal) metal. The discovery of the supercurrent in SNS contacts is sometimes mistakenly attributed to Brian Josephson's 1962 work, yet the effect was known long before his publication and was understood as the proximity effect.


Origin of the effect

Electrons in the superconducting state of a superconductor are ordered in a very different way than in a normal metal, i.e. they are paired into Cooper pairs. Furthermore, electrons in a material cannot be said to have a definitive position because of the momentum-position complementarity. In solid state physics one generally chooses a momentum space basis, and all electron states are filled with electrons until the Fermi surface in a metal, or until the gap edge energy in the superconductor. Because of the nonlocality of the electrons in metals, the properties of those electrons cannot change infinitely quickly. In a superconductor, the electrons are ordered as superconducting Cooper pairs; in a normal metal, the electron order is gapless (single-electron states are filled up to the Fermi surface). If the superconductor and normal metal are brought together, the electron order in the one system cannot infinitely abruptly change into the other order at the border. Instead, the paired state in the superconducting layer is carried over to the normal metal, where the pairing is destroyed by scattering events, causing the Cooper pairs to lose their coherence. For very clean metals, such as
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, the pairing can persist for hundreds of microns. Conversely, the (gapless) electron order present in the normal metal is also carried over to the superconductor in that the superconducting gap is lowered near the interface. The microscopic model describing this behavior in terms of single electron processes is called Andreev reflection. It describes how electrons in one material take on the order of the neighboring layer by taking into account interface transparency and the states (in the other material) from which the electrons can scatter.


Overview

As a contact effect, the proximity effect is closely related to thermoelectric phenomena like the Peltier effect or the formation of pn junctions in
semiconductors A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
. The proximity effect enhancement of T_c is largest when the normal material is a metal with a large diffusivity rather than an insulator (I). Proximity-effect suppression of T_c in a spin-singlet superconductor is largest when the normal material is ferromagnetic, as the presence of the internal magnetic field weakens superconductivity (
Cooper pairs In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Cooper ...
breaking).


Research

The study of S/N, S/I and S/S' (S' is lower superconductor) bilayers and multilayers has been a particularly active area of superconducting proximity effect research. The behavior of the compound structure in the direction parallel to the interface differs from that perpendicular to the interface. In
type II superconductor In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the ...
s exposed to a magnetic field parallel to the interface, vortex defects will preferentially nucleate in the N or I layers and a discontinuity in behavior is observed when an increasing field forces them into the S layers. In type I superconductors, flux will similarly first penetrate N layers. Similar qualitative changes in behavior do not occur when a magnetic field is applied perpendicular to the S/I or S/N interface. In S/N and S/I multilayers at low temperatures, the long penetration depths and coherence lengths of the Cooper pairs will allow the S layers to maintain a mutual, three-dimensional quantum state. As temperature is increased, communication between the S layers is destroyed resulting in a crossover to two-dimensional behavior. The anisotropic behavior of S/N, S/I and S/S' bilayers and multilayers has served as a basis for understanding the far more complex critical field phenomena observed in the highly anisotropic cuprate high-temperature superconductors. Recently the Holm–Meissner proximity effect was observed in
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
by the Morpurgo research group. The experiments have been done on nanometer scale devices made of single graphene layers with superimposed superconducting electrodes made of 10  Nanometre, nm Titanium and 70 nm Aluminum films. Aluminum is a superconductor, which is responsible for inducing superconductivity into graphene. The distance between the electrodes was in the range between 100 nm and 500 nm. The proximity effect is manifested by observations of a supercurrent, i.e. a current flowing through the graphene junction with zero voltage on the junction. By using the gate electrodes the researches have shown that the proximity effect occurs when the carriers in the graphene are electrons as well as when the carriers are holes. The critical current of the devices was above zero even at the Dirac point.


Abrikosov vortex and proximity effect

Here is shown, that a quantum vortex with a well-defined core can exist in a rather thick normal metal, proximized with a superconductor.


See also

* *


References

*''Superconductivity of Metals and Alloys'' by P.G. de Gennes, {{ISBN, 0-201-40842-2, a textbook which devotes significant space to the superconducting proximity effect (called "boundary effect" in the book).
Superconductivity