Prothrombinase
   HOME

TheInfoList



OR:

The prothrombinase complex consists of the serine protease,
Factor Xa Factor X, also known by the eponym Stuart–Prower factor, is an enzyme () of the coagulation cascade. It is a serine endopeptidase (protease group S1, PA clan). Factor X is synthesized in the liver and requires vitamin K for its synthesis. Fac ...
, and the protein cofactor,
Factor V Factor V (pronounced factor five) is a protein of the coagulation system, rarely referred to as proaccelerin or labile factor. In contrast to most other coagulation factors, it is not enzymatically active but functions as a cofactor. Deficienc ...
a. The complex assembles on negatively charged phospholipid membranes in the presence of calcium ions. The prothrombinase complex catalyzes the conversion of prothrombin (Factor II), an inactive zymogen, to
thrombin Thrombin (, ''fibrinogenase'', ''thrombase'', ''thrombofort'', ''topical'', ''thrombin-C'', ''tropostasin'', ''activated blood-coagulation factor II'', ''blood-coagulation factor IIa'', ''factor IIa'', ''E thrombin'', ''beta-thrombin'', ''gamma- ...
(Factor IIa), an active serine protease. The activation of thrombin is a critical reaction in the
coagulation cascade Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It potentially results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The mechanism o ...
, which functions to regulate
hemostasis In biology, hemostasis or haemostasis is a process to prevent and stop bleeding, meaning to keep blood within a damaged blood vessel (the opposite of hemostasis is hemorrhage). It is the first stage of wound healing. This involves coagulation, whi ...
in the body. To produce thrombin, the prothrombinase complex cleaves two peptide bonds in prothrombin, one after Arg271 and the other after Arg320. Although it has been shown that Factor Xa can activate prothrombin when unassociated with the prothrombinase complex, the rate of thrombin formation is severely decreased under such circumstances. The prothrombinase complex can catalyze the activation of prothrombin at a rate 3 x 105-fold faster than can Factor Xa alone. Thus, the prothrombinase complex is required for the efficient production of activated thrombin and also for adequate hemostasis.


Activation of protein precursors

Both Factor X and Factor V circulate in the blood as inactive precursors prior to activation by the coagulation cascade. The inactive zymogen Factor X consists of two chains, a light chain (136 residues) and a heavy chain (306 residues). The light chain contains an N-terminal γ-carboxyglutamic acid domain (
Gla domain Vitamin K-dependent carboxylation/gamma-carboxyglutamic (GLA) domain is a protein domain that contains post-translational modifications of many glutamate residues by vitamin K-dependent carboxylation to form γ-carboxyglutamate (Gla). Proteins wit ...
) and two epidermal growth factor-like domains (EGF1 and EGF2). The heavy chain consists of an N-terminal activation peptide and a serine-protease domain. Factor X can be activated by both the
factor VIIa Coagulation factor VII (, formerly known as proconvertin) is one of the proteins that causes blood to clot in the coagulation cascade, and in humans is coded for by the gene ''F7''. It is an enzyme of the serine protease class. Once bound to tiss ...
-
tissue factor Tissue factor, also called platelet tissue factor, factor III, or CD142, is a protein encoded by the ''F3'' gene, present in subendothelial tissue and leukocytes. Its role in the clotting process is the initiation of thrombin formation from the ...
complex of the extrinsic coagulation pathway and by the
tenase In coagulation, the procoagulant protein factor X can be activated into factor Xa in two ways: either extrinsically or intrinsically. The activating complexes are together called tenase. Tenase is a blend word of "ten" and the suffix "-ase", whic ...
complex of the intrinsic pathway. The intrinsic tenase complex is composed of both
Factor IX Factor IX (or Christmas factor) () is one of the serine proteases of the coagulation system; it belongs to peptidase family S1. Deficiency of this protein causes haemophilia B. It was discovered in 1952 after a young boy named Stephen Christmas w ...
a and
Factor VIII Factor VIII (FVIII) is an essential blood-clotting protein, also known as anti-hemophilic factor (AHF). In humans, factor VIII is encoded by the ''F8'' gene. Defects in this gene result in hemophilia A, a recessive X-linked coagulation disorder. ...
a. The activation peptide is released when Factor X is activated to Factor Xa, but the heavy and light chains remain covalently linked following activation. Factor V circulates as a single-chain procofactor which contains six domains, A1-A2-B-A3-C1-C2. Thrombin activates Factor V by cleaving off the B domain. Other proteases also activate Factor V, but this cleavage is primarily carried out by thrombin. Following cleavage, Factor Va contains a heavy chain, composed of the A1 and A2 domains and a light chain, consisting of the A3, C1, and C2 domains. The light and heavy chains of Factor Va are linked via a divalent metal ion, such as calcium.


Complex assembly

Prothrombinase assembly begins with the binding of Factor Xa and Factor Va to negatively charged phospholipids on plasma membranes. Activated Factor Xa and Factor Va bind to the plasma membranes of a variety of different cell types, including monocytes, platelets, and endothelial cells. Both Factor Xa and Va bind to the membrane independently of each other, but they both bind to mutually exclusive binding sites. Both Factor Xa and Factor Va associate with the membrane via their light chains, with Factor Xa binding via its Gla-domain in a calcium-dependent manner and Factor Va via its C2 and C1 domains. Once bound to the plasma membrane, Factor Xa and Factor Va rapidly associate in a 1:1 stoichiometric ratio to form the prothrombinase complex. Assembly of the prothrombinase complex is calcium dependent. When associated with the prothrombinase complex, the catalytic efficiency of Factor Xa is increased 300,000-fold compared to its efficiency alone. Factor Xa and Factor Va interact tightly with each other when associated on the plasma membrane. Further, membrane-bound Factor Va provides a strong catalytic advantage to the prothrombinase complex. Factor Va strengthens the affinity of Factor Xa for the membrane and also increases the kcat of Factor Xa for prothrombin. Factor Va also decreases the Km of the reaction by enhancing the binding of prothrombin to the prothrombinase complex.


Activity

The fully assembled prothrombinase complex catalyzes the conversion of the zymogen prothrombin to the serine protease thrombin. Specifically, Factor Xa cleaves prothrombin in two locations, following Arg271 and Arg320 in human prothrombin. Because there are two cleavage events, prothrombin activation can proceed by two pathways. In one pathway, prothrombin is first cleaved at Arg271. This cleavage produces Fragment 1•2, comprising the first 271 residues, and the intermediate prethrombin 2, which is made up of residues 272-579. Fragment 1•2 is released as an activation peptide, and prethrombin 2 is cleaved at Arg320, yielding active thrombin. The two chains formed after the cleavage at Arg320, termed the A and B chains, are linked by a disulfide bond in active thrombin. In the alternate pathway for thrombin activation, prothrombin is first cleaved at Arg320, producing a catalytically active intermediate called meizothrombin. Meizothrombin contains fragment 1•2 A chain linked to the B chain by a disulfide bond. Subsequent cleavage of meizothrombin by Factor Xa at Arg271 gives Fragment 1•2 and active thrombin, consisting of the A and B chains linked by a disulfide bond. When thrombin is generated by Factor Xa alone, the first pathway predominates and prothrombin is first cleaved after Arg271, producing prethrombin 2, which is subsequently cleaved after Arg320. If Factor Xa acts as a component of the prothrombinase complex, however, the second pathway is favored, and prothrombin is first cleaved after Arg320, producing meizothrombin, which is cleaved after Arg271 to produce active thrombin. Thus, the formation of the prothrombinase complex alters the sequence of prothrombin bond cleavage.


Inactivation

Factor Va is inactivated following cleavage by activated
protein C Protein C, also known as autoprothrombin IIA and blood coagulation factor XIX, is a zymogen, that is, an inactive enzyme. The activated form plays an important role in regulating anticoagulation, inflammation, and apoptosis, cell death and ...
. Activated protein C cleaves Factor Va in both its light and heavy chains. Cleavage in the heavy chain reduces the ability of Factor V to bind to Factor Xa. Activated protein C interacts tightly and exclusively with the light chain of Factor Va, and this interaction is calcium independent. Factor Xa can help to prevent the inactivation of Factor Va by protecting Factor Va from activated protein C. It is likely that Factor Xa and activated protein C compete for similar sites on Factor Va. Factor Xa is inhibited by the
antithrombin Antithrombin (AT) is a small glycoprotein that inactivates several enzymes of the coagulation system. It is a 432-amino-acid protein produced by the liver. It contains three disulfide bonds and a total of four possible glycosylation sites. α-An ...
III/
heparin Heparin, also known as unfractionated heparin (UFH), is a medication and naturally occurring glycosaminoglycan. Since heparins depend on the activity of antithrombin, they are considered anticoagulants. Specifically it is also used in the treatm ...
system, which also acts to inhibit thrombin.


Role in disease

Deficiencies of either protein components of the prothrombinase complex are very rare. Factor V deficiency, also called parahemophilia, is a rare autosomal recessive bleeding disorder with an approximate incidence of 1 in 1,000,000. Congenital Factor X deficiency is also extremely rare, affecting an estimated 1 in 1,000,000. A point mutation in the gene encoding Factor V can lead to a hypercoagulability disorder called
Factor V Leiden Factor V Leiden (rs6025 or ''F5'' p.R506Q) is a variant (mutated form) of human factor V (one of several substances that helps blood clot), which causes an increase in blood clotting (hypercoagulability). Due to this mutation, protein C, an anticoa ...
. In Factor V Leiden, a G1691A nucleotide replacement results in an R506Q amino acid mutation. Factor V Leiden increases the risk of venous thrombosis by two known mechanisms. First, activated protein C normally inactivates Factor Va by cleaving the cofactor at Arg306, Arg506, and Arg679. The Factor V Leiden mutation at Arg506 renders Factor Va resistant to inactivation by activated protein C. As a result of this resistance, the half-life of Factor Va in plasma is increased, resulting in increased thrombin production and increased risk of thrombosis. Secondly, under normal conditions, if Factor V is cleaved by activated protein C instead of thrombin, it can serve as a cofactor for activated protein C. Once bound to Factor V, activated protein C cleaves and inactivates Factor VIIIa. The mutated form of Factor V present in Factor V Leiden, however, serves as a less efficient cofactor of activated protein C. Thus, Factor VIIIa is less efficiently inactivated in Factor V Leiden, further increasing the risk of thrombosis. In fact, Factor V Leiden is the most common cause of inherited thrombosis. Heterozygous Factor V Leiden is present in approximately 5% of the white population in the United States and homozygous Factor V Leiden is found less than 1% of this population. Factor V Leiden is much more common in individuals of Northern European descent and in some Middle Eastern populations. It is less common in Hispanic populations, and rare in African, Asian, and Native American populations. Factor V Leiden is an important risk factor for venous thromboembolism, that is, deep vein thrombosis or pulmonary embolism. In fact, heterozygous Factor V Leiden increases one's risk of recurrent venous thromboembolism by 40%.


Anticoagulant drugs

Inhibition of Factor Xa prevents thrombin activation, thereby preventing clot formation. Thus, Factor Xa is used as both a direct and indirect target of several anticoagulant drugs. For example, the drug
Fondaparinux Fondaparinux (trade name Arixtra) is an anticoagulant medication chemically related to low molecular weight heparins. It is marketed by GlaxoSmithKline. A generic version developed by Alchemia is marketed within the US by Dr. Reddy's Laboratories. ...
is an indirect inhibitor of Factor Xa. Fondaparinux binds to antithrombin III and activates the molecule for Factor Xa inhibition. In fact, Fondaparinux imparts an increased affinity of antithrombin III to Factor Xa, and this increased affinity results in a 300-fold increase in the antithrombin III inhibitory effect on Factor Xa. After the antithrombin III binds to Factor Xa, the Fondaparinux is released and can activate another antithrombin. Another drug that indirectly inhibits Factor Xa is
Idraparinux Idraparinux sodium is an anticoagulant medication in development by Sanofi-Aventis. It has a similar chemical structure and the same method of action as fondaparinux, but with an elimination half-life about five to six times longer (an increase ...
. Idraparinux also binds antithrombin III, however with a 30-fold increase in affinity as compared to Fondaparinux. Idraparinux has an increased half-life as compared to Fondaparinux and can be administered on a weekly basis, whereas Fondaparinux must be subcutaneously injected daily.
Rivaroxaban Rivaroxaban, sold under the brand name Xarelto among others, is an anticoagulant medication (blood thinner) used to treat and prevent blood clots. Specifically it is used to treat deep vein thrombosis and pulmonary emboli and prevent blood clo ...
and
Apixaban Apixaban, sold under the brand name Eliquis, is an anticoagulant medication used to treat and prevent blood clots and to prevent stroke in people with nonvalvular atrial fibrillation through directly inhibiting factor Xa. Specifically it is u ...
are direct Factor Xa inhibitors. Rivaroxaban and Apixaban bind to the active site of Factor Xa, regardless of whether Factor Xa is bound in the prothrombinase complex or is in its free form. These direct Factor Xa inhibitors can be administered orally, as can
dabigatran etexilate Dabigatran, sold under the brand name Pradaxa among others, is an anticoagulant used to treat and prevent venous thromboembolism, blood clots and to prevent stroke in people with atrial fibrillation. Specifically it is used to prevent blood clo ...
, which is a direct thrombin inhibitor. Fondaparinux, Rivaroxaban, Apixaban, Dabigatran Etexilate, and Endoxaban are currently used as FDA-approved anticoagulant drugs. Development of Idraparinux was discontinued.


References


See also

coagulation cascade Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It potentially results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The mechanism o ...
hemostasis In biology, hemostasis or haemostasis is a process to prevent and stop bleeding, meaning to keep blood within a damaged blood vessel (the opposite of hemostasis is hemorrhage). It is the first stage of wound healing. This involves coagulation, whi ...
{{blood Coagulation system