In
cell biology
Cell biology (also cellular biology or cytology) is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living a ...
, protein
kinase
In biochemistry, a kinase () is an enzyme that catalysis, catalyzes the transfer of phosphate groups from High-energy phosphate, high-energy, phosphate-donating molecules to specific Substrate (biochemistry), substrates. This process is known as ...
A (PKA) is a family of
enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
s whose activity is dependent on cellular levels of
cyclic AMP
Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transd ...
(cAMP). PKA is also known as cAMP-dependent protein kinase (). PKA has several functions in the cell, including regulation of
glycogen
Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. The polysaccharide structure represents the main storage form of glucose in the body.
Glycogen functions as one o ...
,
sugar, and
lipid
Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids incl ...
metabolism
Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
. It should not be confused with 5'-AMP-activated protein kinase (
AMP-activated protein kinase).
History
Protein kinase A, more precisely known as adenosine 3',5'-monophosphate (cyclic AMP)-dependent protein kinase, abbreviated to PKA, was discovered by chemists
Edmond H. Fischer and
Edwin G. Krebs in 1968. They won the
Nobel Prize in Physiology or Medicine
The Nobel Prize in Physiology or Medicine ( sv, Nobelpriset i fysiologi eller medicin) is awarded yearly by the Nobel Assembly at the Karolinska Institute, Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or ...
in 1992 for their work on phosphorylation and dephosphorylation and how it relates to PKA activity.
PKA is one of the most widely researched
protein kinases
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fun ...
, in part because of its uniqueness; out of 540 different protein kinase genes that make up the human
kinome, only one other protein kinase,
casein kinase 2, is known to exist in a physiological tetrameric complex, meaning it consists of four subunits.
The diversity of mammalian PKA subunits was realized after Dr. Stan McKnight and others identified four possible catalytic subunit genes and four regulatory subunit genes. In 1991,
Susan Taylor and colleagues crystallized the PKA Cα subunit, which revealed the bi-lobe structure of the protein kinase core for the very first time, providing a blueprint for all the other protein kinases in a genome (the kinome).
Structure
When inactive, the PKA holoenzyme exists as a tetramer which consists of two regulatory
subunits and two catalytic subunits. The catalytic subunit contains the active site, a series of canonical residues found in
protein kinases
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fun ...
that bind and hydrolyse
ATP
ATP may refer to:
Companies and organizations
* Association of Tennis Professionals, men's professional tennis governing body
* American Technical Publishers, employee-owned publishing company
* ', a Danish pension
* Armenia Tree Project, non ...
, and a domain to bind the regulatory subunit. The regulatory subunit has domains to bind to cyclic AMP, a domain that interacts with catalytic subunit, and an auto inhibitory domain. There are two major forms of regulatory subunit; RI and RII.
Mammalian cells have at least two types of PKAs: type I is mainly in the
cytosol
The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
, whereas type II is bound via its regulatory subunits and special anchoring proteins, described in the
anchorage section, to the
plasma membrane
The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
,
nuclear membrane,
mitochondrial outer membrane, and
microtubules
Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 a ...
. In both types, once the catalytic subunits are freed and active, they can migrate into the
nucleus
Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to:
*Atomic nucleus, the very dense central region of an atom
* Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA
Nucl ...
(where they can phosphorylate transcription regulatory proteins), while the regulatory subunits remain in the cytoplasm.
The following human genes encode PKA subunits:
* catalytic subunit –
PRKACA
The catalytic subunit α of protein kinase A is a key regulatory enzyme that in humans is encoded by the ''PRKACA'' gene. This enzyme is responsible for phosphorylating other proteins and substrates, changing their activity. Protein kinase A catal ...
,
PRKACB
cAMP-dependent protein kinase catalytic subunit beta is an enzyme that in humans is encoded by the ''PRKACB'' gene.
cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the protein kina ...
,
PRKACG
cAMP-dependent protein kinase catalytic subunit gamma is an enzyme that in humans is encoded by the ''PRKACG'' gene.
Cyclic AMP-dependent protein kinase (PKA) consists of two catalytic subunits and a regulatory subunit dimer. This gene encodes t ...
* regulatory subunit type I -
PRKAR1A,
PRKAR1B
cAMP-dependent protein kinase type I-beta regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR1B'' gene.
Clinical significance
Mutations in PRKAR1B cause neurodegenerative disorder.
Interactions
PRKAR1B has been shown to ...
* regulatory subunit type II -
PRKAR2A,
PRKAR2B
Mechanism
Activation
PKA is also commonly known as cAMP-dependent protein kinase, because it has traditionally been thought to be activated through release of the catalytic subunits when levels of the
second messenger
Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form or cell signaling, encompassing both first m ...
called
cyclic adenosine monophosphate
Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transd ...
, or cAMP, rise in response to a variety of signals. However, recent studies evaluating the intact holoenzyme complexes, including regulatory AKAP-bound signalling complexes, have suggested that the local sub cellular activation of the catalytic activity of PKA might proceed without physical separation of the regulatory and catalytic components, especially at physiological concentrations of cAMP.
In contrast, experimentally induced supra physiological concentrations of cAMP, meaning higher than normally observed in cells, are able to cause separation of the holoenzymes, and release of the catalytic subunits.
Extracellular hormones, such as
glucagon
Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises concentration of glucose and fatty acids in the bloodstream, and is considered to be the main catabolic hormone of the body. It is also used as a medication to trea ...
and
epinephrine
Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands and ...
, begin an intracellular signalling cascade that triggers protein kinase A activation by first binding to a
G protein–coupled receptor
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
(GPCR) on the target cell. When a GPCR is activated by its extracellular ligand, a
conformational change
In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors.
A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
is induced in the receptor that is transmitted to an attached intracellular
heterotrimeric G protein complex by
protein domain dynamics. The
Gs alpha subunit of the stimulated G protein complex exchanges
GDP for
GTP in a reaction catalyzed by the GPCR and is released from the complex. The activated Gs alpha subunit binds to and activates an enzyme called
adenylyl cyclase
Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction:
:A ...
, which, in turn, catalyzes the conversion of
ATP
ATP may refer to:
Companies and organizations
* Association of Tennis Professionals, men's professional tennis governing body
* American Technical Publishers, employee-owned publishing company
* ', a Danish pension
* Armenia Tree Project, non ...
into cAMP, directly increasing the cAMP level. Four cAMP molecules are able to bind to the two regulatory subunits. This is done by two cAMP molecules binding to each of the two cAMP binding sites (CNB-B and CNB-A) which induces a conformational change in the regulatory subunits of PKA, causing the subunits to detach and unleash the two, now activated, catalytic subunits.
Once released from inhibitory regulatory subunit, the catalytic subunits can go on to
phosphorylate
In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, ...
a number of other proteins in the minimal substrate context Arg-Arg-X-Ser/Thr., although they are still subject to other layers of regulation, including modulation by the heat stable pseudosubstrate inhibitor of PKA, termed PKI.
Below is a list of the steps involved in PKA activation:
# Cytosolic
cAMP increases
# Two cAMP molecules bind to each PKA regulatory subunit
# The regulatory subunits move out of the active sites of the catalytic subunits and the R2C2 complex dissociates
# The free catalytic subunits interact with proteins to phosphorylate Ser or Thr residues.
Catalysis
The liberated catalytic subunits can then catalyze the transfer of ATP terminal phosphates to
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
substrate
Substrate may refer to:
Physical layers
*Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached
** Substrate (locomotion), the surface over which an organism lo ...
s at
serine
Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − for ...
, or
threonine
Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), a carboxyl group (which is in the deprotonated −COO ...
residues
Residue may refer to:
Chemistry and biology
* An amino acid, within a peptide chain
* Crop residue, materials left after agricultural processes
* Pesticide residue, refers to the pesticides that may remain on or in food after they are appli ...
. This
phosphorylation
In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, ...
usually results in a change in activity of the substrate. Since PKAs are present in a variety of cells and act on different substrates, PKA regulation and cAMP regulation are involved in many different pathways.
The mechanisms of further effects may be divided into direct protein phosphorylation and protein synthesis:
*In direct protein phosphorylation, PKA directly either increases or decreases the activity of a protein.
*In protein synthesis, PKA first directly activates
CREB, which binds the
cAMP response element
CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first de ...
(CRE), altering the
transcription and therefore the synthesis of the protein. In general, this mechanism takes more time (hours to days).
Phosphorylation mechanism
The Serine/Threonine residue of the substrate peptide is orientated in such a way that the hydroxyl group faces the gamma phosphate group of the bound ATP molecule. Both the substrate, ATP, and two Mg2+ ions form intensive contacts with the catalytic subunit of PKA. In the active conformation, the C helix packs against the N-terminal lobe and the Aspartate residue of the conserved DFG motif chelates the Mg2+ ions, assisting in positioning the ATP substrate. The triphosphate group of ATP points out of the adenosine pocket for the transfer of gamma-phosphate to the Serine/Threonine of the peptide substrate. There are several conserved residues, include Glutamate (E) 91 and Lysine (K) 72, that mediate the positioning of alpha- and beta-phosphate groups. The hydroxyl group of the peptide substrate's Serine/Threonine attacks the gamma phosphate group at the phosphorus via an SN2 nucleophilic reaction, which results in the transfer of the terminal phosphate to the peptide substrate and cleavage of the phosphodiester bond between the beta-phosphate and the gamma-phosphate groups. PKA acts as a model for understanding
protein kinase
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fu ...
biology, with the position of the conserved residues helping to distinguish the active
protein kinase
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fu ...
and inactive
pseudokinase members of the human kinome.
Inactivation
Downregulation of protein kinase A occurs by a feedback mechanism and uses a number of cAMP hydrolyzing
phosphodiesterase
A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, ''phosphodiesterase'' refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many o ...
(PDE) enzymes, which belong to the substrates activated by PKA. Phosphodiesterase quickly converts cAMP to AMP, thus reducing the amount of cAMP that can activate protein kinase A. PKA is also regulated by a complex series of phosphorylation events, which can include modification by autophosphorylation and phosphorylation by regulatory kinases, such as PDK1.
Thus, PKA is controlled, in part, by the levels
cAMP. Also, the catalytic subunit itself can be down-regulated by phosphorylation.
Anchorage
The regulatory subunit dimer of PKA is important for localizing the kinase inside the cell. The dimerization and docking (D/D) domain of the dimer binds to the A-kinase binding (AKB) domain of
A-kinase anchor protein (AKAP). The AKAPs localize PKA to various locations (e.g., plasma membrane, mitochondria, etc.) within the cell.
AKAPs bind many other signaling proteins, creating a very efficient signaling hub at a certain location within the cell. For example, an AKAP located near the nucleus of a heart muscle cell would bind both PKA and phosphodiesterase (hydrolyzes cAMP), which allows the cell to limit the productivity of PKA, since the catalytic subunit is activated once cAMP binds to the regulatory subunits.
Function
PKA phosphorylates
proteins
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respondi ...
that have the motif Arginine-Arginine-X-Serine exposed, in turn (de)activating the proteins. Many possible substrates of PKA exist; a list of such substrates is available and maintained by the
NIH.
As protein expression varies from cell type to cell type, the proteins that are available for phosphorylation will depend upon the cell in which PKA is present. Thus, the effects of PKA activation vary with
cell type:
Overview table
In adipocytes and hepatocytes
Epinephrine
Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands and ...
and
glucagon
Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises concentration of glucose and fatty acids in the bloodstream, and is considered to be the main catabolic hormone of the body. It is also used as a medication to trea ...
affect the activity of protein kinase A by changing the levels of cAMP in a cell via the G-protein mechanism, using
adenylate cyclase. Protein kinase A acts to phosphorylate many enzymes important in metabolism. For example, protein kinase A phosphorylates
acetyl-CoA carboxylase
Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme () that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC ...
and
pyruvate dehydrogenase. Such covalent modification has an inhibitory effect on these enzymes, thus inhibiting
lipogenesis
In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride synt ...
and promoting net
gluconeogenesis
Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non- carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In verteb ...
. Insulin, on the other hand, decreases the level of phosphorylation of these enzymes, which instead promotes lipogenesis. Recall that gluconeogenesis does not occur in myocytes.
In nucleus accumbens neurons
PKA helps transfer/translate the
dopamine
Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 8 ...
signal into cells in the
nucleus accumbens, which mediates reward, motivation, and
task salience. The vast majority of reward perception involves neuronal activation in the nucleus accumbens, some examples of which include sex, recreational drugs, and food. Protein Kinase A signal transduction pathway helps in modulation of ethanol consumption and its sedative effects. A mouse study reports that mice with genetically reduced cAMP-PKA signalling results into less consumption of ethanol and are more sensitive to its sedative effects.
In skeletal muscle
PKA is directed to specific sub-cellular locations after tethering to
AKAPs.
Ryanodine receptor (RyR) co-localizes with the muscle AKAP and RyR phosphorylation and efflux of Ca
2+ is increased by localization of PKA at RyR by AKAPs.
In cardiac muscle
In a cascade mediated by a
GPCR
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
known as
β1 adrenoceptor, activated by
catecholamine
A catecholamine (; abbreviated CA) is a monoamine neurotransmitter, an organic compound that has a catechol ( benzene with two hydroxyl side groups next to each other) and a side-chain amine.
Catechol can be either a free molecule or a ...
s (notably
norepinephrine
Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin '' ad ...
), PKA gets activated and phosphorylates numerous targets, namely:
L-type calcium channel
The L-type calcium channel (also known as the dihydropyridine channel, or DHP channel) is part of the high-voltage activated family of voltage-dependent calcium channel.
"L" stands for long-lasting referring to the length of activation. This c ...
s,
phospholamban,
troponin I,
myosin binding protein C, and
potassium channels. This increases
inotropy as well as
lusitropy, increasing contraction force as well as enabling the muscles to relax faster.
In memory formation
PKA has always been considered important in formation of a
memory
Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered ...
. In the
fruit fly, reductions in expression activity of DCO (PKA catalytic subunit encoding gene) can cause severe learning disabilities, middle term memory and short term memory. Long term memory is dependent on the CREB transcription factor, regulated by PKA. A study done on drosophila reported that an increase in PKA activity can affect short term memory. However, a decrease in PKA activity by 24% inhibited learning abilities and a decrease by 16% affected both learning ability and memory retention. Formation of a normal memory is highly sensitive to PKA levels.
See also
*
Protein kinase
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fu ...
*
Signal transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellular ...
*
G protein-coupled receptor
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
*
Serine/threonine-specific protein kinase
A serine/threonine protein kinase () is a kinase enzyme, in particular a protein kinase, that phosphorylates the OH group of the amino-acid residues serine or threonine, which have similar side chains. At least 350 of the 500+ human prot ...
*
Myosin light-chain kinase
*
cAMP-dependent pathway
References
External links
*
''Drosophila'' ''cAMP-dependent protein kinase 1'' - The Interactive FlycAMP-dependent protein kinase: PDB Molecule of the Month*
Notes
{{Portal bar, Biology, border=no
Signal transduction
Protein kinases
EC 2.7.11