The propensity theory of probability is a
probability interpretation
The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one b ...
in which the
probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
is thought of as a physical propensity, disposition, or tendency of a given type of situation to yield an
outcome of a certain kind, or to yield a long-run
relative frequency
In statistics, the frequency (or absolute frequency) of an event i is the number n_i of times the observation has occurred/recorded in an experiment or study. These frequencies are often depicted graphically or in tabular form.
Types
The cumula ...
of such an outcome.
['Interpretations of Probability', ]Stanford Encyclopedia of Philosophy
The ''Stanford Encyclopedia of Philosophy'' (''SEP'') combines an online encyclopedia of philosophy with peer-reviewed publication of original papers in philosophy, freely accessible to Internet users. It is maintained by Stanford University. Eac ...
br>
Retrieved 23 December 2006.
Propensities are not relative frequencies, but purported ''causes'' of the observed stable relative frequencies. Propensities are invoked to ''explain why'' repeating a certain kind of experiment will generate a given outcome type at a persistent rate. A central aspect of this explanation is the
law of large numbers. This law, which is a consequence of the
axioms of probability
The Kolmogorov axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probabili ...
, says that if (for example) a coin is tossed repeatedly many times, in such a way that its probability of landing heads is the same on each toss, and the outcomes are probabilistically independent, then the relative frequency of heads will (with high probability) be close to the probability of heads on each single toss. This law suggests that stable long-run frequencies are a manifestation of invariant ''single-case'' probabilities.
Frequentists
Frequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials (the long-run probability). Probabilities can be found (in principle) by a repe ...
are unable to take this approach, since relative frequencies do not exist for single tosses of a coin, but only for large ensembles or collectives. These single-case probabilities are known as propensities or chances. Hence, it can be thought of as "meta-probability".
In addition to explaining the emergence of stable relative frequencies, the idea of propensity is motivated by the desire to make sense of single-case probability attributions in
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, such as the probability of
decay
Decay may refer to:
Science and technology
* Bit decay, in computing
* Software decay, in computing
* Distance decay, in geography
* Decay time (fall time), in electronics
Biology
* Decomposition of organic matter
* Tooth decay (dental caries ...
of a particular
atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, gas, and ...
at a particular moment.
The main challenge facing propensity theories is to say exactly what propensity ''means'', and to show that propensity thus defined has the required properties.
History
A propensity theory of probability was given by
Charles Sanders Peirce
Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism".
Educated as a chemist and employed as a scientist for t ...
.
Karl Popper
A later propensity theory was proposed by philosopher
Karl Popper
Sir Karl Raimund Popper (28 July 1902 – 17 September 1994) was an Austrian-British philosopher, academic and social commentator. One of the 20th century's most influential philosophers of science, Popper is known for his rejection of the cl ...
, who had only slight acquaintance with the writings of
Charles S. Peirce
Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism".
Educated as a chemist and employed as a scientist for t ...
, however.
Popper noted that the outcome of a physical experiment is produced by a certain set of "generating conditions". When we repeat an experiment, as the saying goes, we really perform another experiment with a (more or less) similar set of generating conditions. To say that a set of generating conditions has propensity ''p'' of producing the outcome ''E'' means that those exact conditions, if repeated indefinitely, would produce an outcome sequence in which ''E'' occurred with limiting relative frequency ''p''. For Popper then, a deterministic experiment would have propensity 0 or 1 for each outcome, since those generating conditions would have the same outcome on each trial. In other words, non-trivial propensities (those that differ from 0 and 1) only exist for genuinely indeterministic experiments.
Popper's propensities, while they are not relative frequencies, are yet defined in terms of relative frequency. As a result, they face many of the serious problems that plague frequency theories. First, propensities cannot be empirically ascertained, on this account, since the limit of a sequence is a
tail event
The tail is the section at the rear end of certain kinds of animals’ bodies; in general, the term refers to a distinct, flexible appendage to the torso. It is the part of the body that corresponds roughly to the sacrum and coccyx in mammals, r ...
, and is thus independent of its finite initial segments. Seeing a coin land heads every time for the first million tosses, for example, tells one nothing about the limiting proportion of heads on Popper's view. Moreover, the use of relative frequency to define propensity ''assumes'' the existence of stable relative frequencies, so one cannot then use propensity to ''explain'' the existence of stable relative frequencies, via the Law of large numbers.
Recent work
A number of other philosophers, including
David Miller and
Donald A. Gillies, have proposed propensity theories somewhat similar to Popper's, in that propensities are defined in terms of either long-run or infinitely long-run relative frequencies.
Other propensity theorists (''e.g.''
Ronald Giere) do not explicitly define propensities at all, but rather see propensity as defined by the theoretical role it plays in science. They argue, for example, that physical magnitudes such as
electrical charge
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
cannot be explicitly defined either, in terms of more basic things, but only in terms of what they do (such as attracting and repelling other electrical charges). In a similar way, propensity is whatever fills the various roles that physical probability plays in science.
Other theories have been offered by
D. H. Mellor
David Hugh Mellor (; 10 July 1938 – 21 June 2020) was a British philosopher. He was a Professor of Philosophy and Pro-Vice-Chancellor, later Professor Emeritus, of Cambridge University.
Biography
Mellor was born in London on 10 July 1938, ...
, and
Ian Hacking
Ian MacDougall Hacking (born February 18, 1936) is a Canadian philosopher specializing in the philosophy of science. Throughout his career, he has won numerous awards, such as the Killam Prize for the Humanities and the Balzan Prize, and been ...
Principal principle of David Lewis
What roles does physical probability play in science? What are its properties? One central property of chance is that, when known, it constrains rational belief to take the same numerical value.
David Lewis called this the
principal principle
Principal may refer to:
Title or rank
* Principal (academia), the chief executive of a university
** Principal (education), the office holder/ or boss in any school
* Principal (civil service) or principal officer, the senior management level i ...
,
a term that philosophers have mostly adopted. The principle states:
* The Principal Principle. Let C be any reasonable initial credence function. Let t be any time. Let x be any real number in the unit interval. Let X be the proposition that the chance, at time t, of A's holding equals x. Let E be any proposition compatible with X that is admissible at time t. Then C(AIXE) = x.
Thus, for example, suppose you are certain that a particular biased coin has propensity 0.32 to land heads every time it is tossed. What is then the correct credence? According to the Principal Principle, the correct credence is .32.
See also
*
Bayesian probability
Bayesian probability is an Probability interpretations, interpretation of the concept of probability, in which, instead of frequentist probability, frequency or propensity probability, propensity of some phenomenon, probability is interpreted as re ...
*
Frequentism
Frequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials (the long-run probability). Probabilities can be found (in principle) by a repe ...
References
Further reading
*
*
*
*
External links
* {{PhilPapers, category, propensities
Probability interpretations
Epistemology