HOME

TheInfoList



OR:

In
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
manufacturing, a process corner is an example of a design-of-experiments (DoE) technique that refers to a variation of fabrication parameters used in applying an
integrated circuit An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
design to a semiconductor wafer. Process corners represent the extremes of these parameter variations within which a circuit that has been etched onto the wafer must function correctly. A circuit running on devices fabricated at these process corners may run slower or faster than specified and at lower or higher temperatures and voltages, but if the circuit does not function properly at any of these process extremes the design is considered to have inadequate design margin. To verify the robustness of an integrated circuit design, semiconductor manufacturers will fabricate corner lots, which are groups of wafers that have had process parameters adjusted according to these extremes, and will then test the devices made from these special wafers at varying increments of environmental conditions, such as voltage, clock frequency, and temperature, applied in combination (two or sometimes all three together) in a process called characterization. The results of these tests are plotted using a graphing technique known as a shmoo plot that indicates clearly the boundary limit beyond which a device begins to fail for a given combination of these environmental conditions. Corner-lot analysis is most effective in digital electronics because of the direct effect of process variations on the speed of transistor switching during transitions from one logic state to another, which is not relevant for analog circuits, such as amplifiers.


Significance to digital electronics

In Very-Large-Scale Integration (VLSI)
integrated circuit An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
microprocessor A microprocessor is a computer processor (computing), processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, a ...
design and
semiconductor fabrication Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as RAM and flash memory). It is a multiple-step photol ...
, a process corner represents a three or six sigma variation from nominal doping concentrations (and other parameters) in transistors on a
silicon wafer In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si, silicium), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The ...
. This variation can cause significant changes in the
duty cycle A duty cycle or power cycle is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a for ...
and
slew rate In electronics and electromagnetics, slew rate is defined as the change of voltage or current, or any other electrical or electromagnetic quantity, per unit of time. Expressed in SI units, the unit of measurement is given as the change per seco ...
of
digital Digital usually refers to something using discrete digits, often binary digits. Businesses *Digital bank, a form of financial institution *Digital Equipment Corporation (DEC) or Digital, a computer company *Digital Research (DR or DRI), a software ...
signals, and can sometimes result in
catastrophic failure A catastrophic failure is a sudden and total failure from which recovery is impossible. Catastrophic failures often lead to cascading systems failure. The term is most commonly used for structural failures, but has often been extended to many ot ...
of the entire system. Variation may occur for many reasons, such as minor changes in the humidity or temperature in the clean-room when wafers are transported, or due to the position of the die relative to the center of the wafer.


Types of corners

When working in the schematic domain, we usually only work with front end of line (FEOL) process corners as these corners will affect the performance of devices. But there is an orthogonal set of process parameters that affect back end of line (BEOL) parasitics.


FEOL corners

One naming convention for process corners is to use two-letter designators, where the first letter refers to the N-channel
MOSFET upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale. In electronics, the metal–oxide–semiconductor field- ...
( NMOS) corner, and the second letter refers to the P channel ( PMOS) corner. In this naming convention, three corners exist: typical, fast and slow. Fast and slow corners exhibit carrier mobilities that are higher and lower than normal, respectively. For example, a corner designated as FS denotes fast NFETs and slow PFETs. There are therefore five possible corners: typical-typical (TT) (not really a corner of an n vs. p mobility graph, but called a corner, anyway), fast-fast (FF), slow-slow (SS), fast-slow (FS), and slow-fast (SF). The first three corners (TT, FF, SS) are called even corners, because both types of devices are affected evenly, and generally do not adversely affect the logical correctness of the circuit. The resulting devices can function at slower or faster clock frequencies, and are often binned as such. The last two corners (FS, SF) are called "skewed" corners, and are cause for concern. This is because one type of FET will switch much faster than the other, and this form of imbalanced switching can cause one edge of the output to have much less slew than the other edge. Latching devices may then record incorrect values in the logic chain.


BEOL corners

Source: In addition to the
FET The field-effect transistor (FET) is a type of transistor that uses an electric field to control the current through a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three termi ...
s themselves, there are more on-chip variation (OCV) effects that manifest themselves at smaller technology nodes. These include process, voltage and temperature (PVT) variation effects on on-chip interconnect, as well as via structures. Extraction tools often have a nominal corner to reflect the nominal cross section of the process target. Then the corners cbest and cworst were created to model the smallest and largest cross sections that are in the allowed process variation. A simple thought experiment shows that the smallest cross section with the largest vertical spacing will produce the smallest coupling capacitance. CMOS Digital circuits were more sensitive to capacitance than resistance so this variation was initially acceptable. As processes evolved and resistance of wiring became more critical, the additional rcbest and rcworst were created to model the minimum and maximum cross sectional areas for resistance. But the one change is that cross sectional resistance is not dependent on oxide thickness (vertical spacing between wires) so for rcbest the largest is used and for rcworst the smallest is used.


Accounting for corners

To combat these variation effects, modern technology processes often supply
SPICE In the culinary arts, a spice is any seed, fruit, root, Bark (botany), bark, or other plant substance in a form primarily used for flavoring or coloring food. Spices are distinguished from herbs, which are the leaves, flowers, or stems of pl ...
or
BSIM BSIM (Berkeley Short-channel IGFET Model) refers to a family of MOSFET transistor models for integrated circuit design. It also refers to the BSIM group located in the Department of Electrical Engineering and Computer Sciences (EECS) at the Unive ...
simulation A simulation is an imitative representation of a process or system that could exist in the real world. In this broad sense, simulation can often be used interchangeably with model. Sometimes a clear distinction between the two terms is made, in ...
models for all (or, at the least, TT, FS, and SF) process corners, which enables circuit designers to detect corner skew effects before the design is laid out, as well as post-layout (through parasitics extraction), before it is taped out.


References

{{Reflist


External links


US Patent# 6606729 - Corner simulation methodology
Integrated circuits