HOME

TheInfoList



OR:

A pressurizer is a component of a
pressurized water reactor A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan and Canada). In a PWR, the primary coolant (water) i ...
. The basic design of the pressurized water reactor includes a requirement that the
coolant A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosi ...
(water) in the reactor coolant system must not boil. Put another way, the coolant must remain in the liquid state at all times, especially in the reactor vessel. To achieve this, the coolant in the reactor coolant system is maintained at a
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
sufficiently high that boiling does not occur at the coolant temperatures experienced while the plant is operating or in any analyzed possible transient state. To pressurize the coolant system to a higher pressure than the
vapor pressure Vapor pressure (or vapour pressure in English-speaking countries other than the US; see spelling differences) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phas ...
of the coolant at operating temperatures, a separate pressurizing system is required. This is in the form of the pressurizer.


Design

In a pressurized water reactor plant, the pressurizer is basically a cylindrical pressure vessel with hemispherical ends, mounted with the long axis vertical and directly connected by a single run of piping to the reactor coolant system. It is located inside the reactor
containment building A containment building is a reinforced steel, concrete or lead structure enclosing a nuclear reactor. It is designed, in any emergency, to contain the escape of radioactive steam or gas to a maximum pressure in the range of . The containment i ...
. Although the water in the pressurizer is the same reactor coolant as in the rest of the reactor coolant system, it is basically stagnant, i.e. reactor coolant does not flow through the pressurizer continuously as it does in the other parts of the reactor coolant system. Because of its innate incompressibility, water in a connected piping system adjusts equally to pressure changes anywhere in the connected system. The water in the system may not be at the same pressure at all points in the system due to differences in elevation but the pressure at all points responds equally to a pressure change in any one part of the system. From this phenomenon, it was recognized early on that the pressure in the entire reactor coolant system, including the reactor itself, could be controlled by controlling pressure in a small interconnected area of the system and this led to the design of the pressurizer. The pressurizer is a small vessel compared to the other two major vessels of the reactor coolant system, the reactor vessel itself and the
steam generator A Steam generator is a device used to boil water to create steam. More specifically, it may refer to: *Boiler (steam generator), a closed vessel in which water is heated under pressure *Monotube steam generator *Supercritical steam generator or Ben ...
(s).


Pressure control

Pressure in the pressurizer is controlled by varying the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
of the coolant in the pressurizer. Water pressure in a closed system tracks water temperature directly; as the temperature goes up, pressure goes up and vice versa. To increase the pressure in the reactor coolant system, large
electric Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
heaters in the pressurizer are turned on, raising the coolant temperature in the pressurizer and thereby raising the pressure. To decrease pressure in the reactor coolant system, sprays of relatively cool water are turned on inside the pressurizer, lowering the coolant temperature in the pressurizer and thereby lowering the pressure.


Secondary functions

The pressurizer has two secondary functions.


Water level monitoring

One is providing a place to monitor water level in the reactor coolant system. Since the reactor coolant system is completely flooded during normal operations, there is no point in monitoring coolant level in any of the other vessels. But early awareness of a reduction of coolant level (or a
loss of coolant A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically t ...
) is important to the safety of the
reactor core A nuclear reactor core is the portion of a nuclear reactor containing the nuclear fuel components where the nuclear reactions take place and the heat is generated. Typically, the fuel will be low-enriched uranium contained in thousands of indiv ...
. The pressurizer is deliberately located high in the reactor containment building such that, if the pressurizer has sufficient coolant in it, one can be reasonably certain that all the other vessels of the reactor coolant system (which are below it) are fully flooded with coolant. There is therefore, a coolant level monitoring system on the pressurizer and it is the one reactor coolant system vessel that is normally not full of coolant. The other secondary function is to provide a "cushion" for sudden pressure changes in the reactor coolant system. The upper portion of the pressurizer is specifically designed to NOT contain liquid coolant and a reading of full on the level
instrumentation Instrumentation a collective term for measuring instruments that are used for indicating, measuring and recording physical quantities. The term has its origins in the art and science of scientific instrument-making. Instrumentation can refer to ...
allows for that upper portion to not contain liquid coolant. Because the coolant in the pressurizer is quite hot during normal operations, the space above the liquid coolant is vaporized coolant ( steam). This steam bubble provides a cushion for pressure changes in the reactor coolant system and the operators ensure that the pressurizer maintains this steam bubble at all times during operations. Allowing liquid coolant to completely fill the pressurizer elimates this steam bubble, and is referred to in industry as letting the pressurizer "go hard". This would mean that a sudden pressure change can provide a hammer effect to the entire reactor coolant system. Some facilities also call this letting the pressurizer "go solid," although solid simply refers to being completely full of liquid and without a "steam bubble."


Over-pressure relief system

Part of the pressurizer system is an over-pressure relief system. In the event that pressurizer pressure exceeds a certain maximum, there is a relief valve called the
pilot-operated relief valve Like other pressure relief valves (PRV), pilot-operated relief valves (PORV) are used for emergency relief during overpressure events (e.g., a tank gets too hot and the expanding fluid increases the pressure to dangerous levels). PORV are also c ...
(PORV) on top of the pressurizer which opens to allow steam from the steam bubble to leave the pressurizer in order to reduce the pressure in the pressurizer. This steam is routed to a large tank (or tanks) in the reactor containment building where it is cooled back into liquid (condensed) and stored for later disposition. There is a finite volume to these tanks and if events deteriorate to the point where the tanks fill up, a secondary pressure relief device on the tank(s), often a
rupture disc A rupture disk, also known as a pressure safety disc, burst disc, bursting disc, or burst diaphragm, is a non-reclosing pressure relief safety device that, in most uses, protects a pressure vessel, equipment or system from overpressurization ...
, allows the condensed reactor coolant to spill out onto the floor of the reactor containment building where it pools in
sump A sump is a low space that collects often undesirable liquids such as water or chemicals. A sump can also be an infiltration basin used to manage surface runoff water and recharge underground aquifers. Sump can also refer to an area in a cave ...
s for later disposition.


References

*{{cite book, last=Glasstone , first=Samuel, author2=Sesonkse, Alexander, title=Nuclear Reactor Engineering, publisher=Chapman and Hall, year=1994, isbn=0-412-98521-7 Pressurized water reactors Nuclear power plant components Pressure vessels