Pressure measurement is the measurement of an applied
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
by a
fluid
In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
(
liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
or
gas
Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma).
A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
) on a surface.
Pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
is typically measured in
units
Unit may refer to:
Arts and entertainment
* UNIT, a fictional military organization in the science fiction television series ''Doctor Who''
* Unit of action, a discrete piece of action (or beat) in a theatrical presentation
Music
* Unit (album), ...
of force per unit of
surface area. Many techniques have been developed for the measurement of pressure and
vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
. Instruments used to measure and display pressure mechanically are called pressure gauges, vacuum gauges or compound gauges (vacuum & pressure). The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.
A vacuum gauge is used to measure pressures lower than the ambient
atmospheric pressure
Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, 7 ...
, which is set as the zero point, in negative values (for instance, −1 bar or −760
mmHg equals total vacuum). Most gauges measure pressure relative to atmospheric pressure as the zero point, so this form of reading is simply referred to as "gauge pressure". However, anything greater than total vacuum is technically a form of pressure. For very low pressures, a gauge that uses total vacuum as the zero point reference must be used, giving pressure reading as an absolute pressure.
Other methods of pressure measurement involve sensors that can transmit the pressure reading to a remote indicator or control system (
telemetry
Telemetry is the in situ data collection, collection of measurements or other data at remote points and their automatic data transmission, transmission to receiving equipment (telecommunication) for monitoring. The word is derived from the Gr ...
).
Absolute, gauge and differential pressures — zero reference
Everyday pressure measurements, such as for vehicle tire pressure, are usually made relative to ambient air pressure. In other cases measurements are made relative to a vacuum or to some other specific reference. When distinguishing between these zero references, the following terms are used:
* is zero-referenced against a perfect vacuum, using an
absolute scale
There is no single definition of an absolute scale. In statistics and measurement theory, it is simply a ratio scale in which the unit of measurement is fixed, and values are obtained by counting. According to another definition it is a system of ...
, so it is equal to gauge pressure plus atmospheric pressure.
* is zero-referenced against ambient air pressure, so it is equal to absolute pressure minus atmospheric pressure.
* is the difference in pressure between two points.
The zero reference in use is usually implied by context, and these words are added only when clarification is needed.
Tire pressure
Cold inflation pressure is the inflation pressure of tires before the car is driven and the tires(tyres) warmed up. Recommended cold inflation pressure is displayed on the owner's manual and on the placard (or sticker) attached to the vehicle doo ...
and
blood pressure are gauge pressures by convention, while
atmospheric pressure
Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, 7 ...
s, deep vacuum pressures, and
altimeter pressures must be absolute.
For most
working fluid
For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, ...
s where a fluid exists in a
closed system
A closed system is a natural physical system that does not allow transfer of matter in or out of the system, although — in contexts such as physics, chemistry or engineering — the transfer of energy (''e.g.'' as work or heat) is allowed.
In ...
, gauge pressure measurement prevails. Pressure instruments connected to the system will indicate pressures relative to the current atmospheric pressure. The situation changes when extreme vacuum pressures are measured, then absolute pressures are typically used instead and measuring instruments used will be different.
Differential pressures are commonly used in industrial process systems. Differential pressure gauges have two inlet ports, each connected to one of the volumes whose pressure is to be monitored. In effect, such a gauge performs the mathematical operation of subtraction through mechanical means, obviating the need for an operator or control system to watch two separate gauges and determine the difference in readings.
Moderate vacuum pressure readings can be ambiguous without the proper context, as they may represent absolute pressure or gauge pressure without a negative sign. Thus a vacuum of 26 inHg gauge is equivalent to an absolute pressure of 4 inHg, calculated as 30 inHg (typical atmospheric pressure) − 26 inHg (gauge pressure).
Atmospheric pressure is typically about 100
kPa
KPA may refer to:
* Keele Postgraduate Association, Keele University, UK, formerly Keele Research Association (KRA)
* Kensington (Olympia) station, London, England, National Rail station code
* Kenya Ports Authority
* ''Kiln phosphoric acid'', a ...
at sea level, but is variable with altitude and weather. If the absolute pressure of a fluid stays constant, the gauge pressure of the same fluid will vary as atmospheric pressure changes. For example, when a car drives up a mountain, the (gauge) tire pressure goes up because atmospheric pressure goes down. The absolute pressure in the tire is essentially unchanged.
Using atmospheric pressure as reference is usually signified by a "g" for gauge after the pressure unit, e.g. 70 psig, which means that the pressure measured is the total pressure minus
atmospheric pressure
Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, 7 ...
. There are two types of gauge reference pressure: vented gauge (vg) and sealed gauge (sg).
A vented-gauge
pressure transmitter
A pressure sensor is a device for pressure measurement of gases or liquids. Pressure is an expression of the force required to stop a fluid from expanding, and is usually stated in terms of force per unit area. A pressure sensor usually a ...
, for example, allows the outside air pressure to be exposed to the negative side of the pressure-sensing diaphragm, through a vented cable or a hole on the side of the device, so that it always measures the pressure referred to ambient
barometric pressure
Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, 7 ...
. Thus a vented-gauge reference
pressure sensor should always read zero pressure when the process pressure connection is held open to the air.
A sealed gauge reference is very similar, except that atmospheric pressure is sealed on the negative side of the diaphragm. This is usually adopted on high pressure ranges, such as
hydraulics
Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counte ...
, where atmospheric pressure changes will have a negligible effect on the accuracy of the reading, so venting is not necessary. This also allows some manufacturers to provide secondary pressure containment as an extra precaution for pressure equipment safety if the burst pressure of the primary pressure sensing
diaphragm is exceeded.
There is another way of creating a sealed gauge reference, and this is to seal a high
vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
on the reverse side of the sensing diaphragm. Then the output signal is offset, so the pressure sensor reads close to zero when measuring atmospheric pressure.
A sealed gauge reference
pressure transducer
A pressure sensor is a device for pressure measurement of gases or liquids. Pressure is an expression of the force required to stop a fluid from expanding, and is usually stated in terms of force per unit area. A pressure sensor usually act ...
will never read exactly zero because atmospheric pressure is always changing and the reference in this case is fixed at 1 bar.
To produce an
absolute pressure sensor
A pressure sensor is a device for pressure measurement of gases or liquids. Pressure is an expression of the force required to stop a fluid from expanding, and is usually stated in terms of force per unit area. A pressure sensor usually ...
, the manufacturer seals a high vacuum behind the sensing diaphragm. If the process-pressure connection of an absolute-pressure transmitter is open to the air, it will read the actual
barometric pressure
Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, 7 ...
.
History
For much of human history, the pressure of gases like air was ignored, denied, or taken for granted, but as early as the 6th century BC, Greek philosopher
Anaximenes of
Miletus
Miletus (; gr, Μῑ́λητος, Mī́lētos; Hittite transcription ''Millawanda'' or ''Milawata'' (exonyms); la, Mīlētus; tr, Milet) was an ancient Greek city on the western coast of Anatolia, near the mouth of the Maeander River in a ...
claimed that all things are made of air that is simply changed by varying levels of pressure. He could observe water evaporating, changing to a gas, and felt that this applied even to solid matter. More condensed air made colder, heavier objects, and expanded air made lighter, hotter objects. This was akin to how gases really do become less dense when warmer, more dense when cooler.
In the 17th century,
Evangelista Torricelli
Evangelista Torricelli ( , also , ; 15 October 160825 October 1647) was an Italian physicist and mathematician, and a student of Galileo. He is best known for his invention of the barometer, but is also known for his advances in optics and work o ...
conducted experiments with mercury that allowed him to measure the presence of air. He would dip a glass tube, closed at one end, into a bowl of mercury and raise the closed end up out of it, keeping the open end submerged. The weight of the mercury would pull it down, leaving a partial vacuum at the far end. This validated his belief that air/gas has mass, creating pressure on things around it. Previously, the more popular conclusion, even for
Galileo
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
, was that air was weightless and it is vacuum that provided force, as in a siphon. The discovery helped bring Torricelli to the conclusion:
This test, known as
Torricelli's experiment, was essentially the first documented pressure gauge.
Blaise Pascal
Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer.
He was a child prodigy who was educated by his father, a tax collector in Rouen. Pa ...
went farther, having his brother-in-law try the experiment at different altitudes on a mountain, and finding indeed that the farther down in the ocean of atmosphere, the higher the pressure.
Units
The
SI unit for pressure is the
pascal (Pa), equal to one
newton per
square metre
The square metre ( international spelling as used by the International Bureau of Weights and Measures) or square meter (American spelling) is the unit of area in the International System of Units (SI) with symbol m2. It is the area of a square w ...
(N·m
−2 or kg·m
−1·s
−2). This special name for the unit was added in 1971; before that, pressure in SI was expressed in units such as N·m
−2. When indicated, the zero reference is stated in parenthesis following the unit, for example 101 kPa (abs). The
pound per square inch
The pound per square inch or, more accurately, pound-force per square inch (symbol: lbf/in2; abbreviation: psi) is a unit of pressure or of stress based on avoirdupois units. It is the pressure resulting from a force of one pound-force applied t ...
(psi) is still in widespread use in the US and Canada, for measuring, for instance, tire pressure. A letter is often appended to the psi unit to indicate the measurement's zero reference; psia for absolute, psig for gauge, psid for differential, although this practice is discouraged by the
NIST.
Because pressure was once commonly measured by its ability to displace a column of liquid in a manometer, pressures are often expressed as a depth of a particular fluid (''e.g.,'' inches of water). Manometric measurement is the subject of
pressure head
In fluid mechanics, pressure head is the height of a liquid column that corresponds to a particular pressure exerted by the liquid column on the base of its container. It may also be called static pressure head or simply static head (but not ''sta ...
calculations. The most common choices for a manometer's fluid are
mercury (Hg) and water; water is nontoxic and readily available, while mercury's density allows for a shorter column (and so a smaller manometer) to measure a given pressure. The abbreviation "W.C." or the words "water column" are often printed on gauges and measurements that use water for the manometer.
Fluid density and local gravity can vary from one reading to another depending on local factors, so the height of a fluid column does not define pressure precisely. So measurements in "
millimetres of mercury" or "
inches of mercury
Inch of mercury (inHg and ″Hg) is a non- SI unit of measurement for pressure. It is used for barometric pressure in weather reports, refrigeration and aviation in the United States.
It is the pressure exerted by a column of mercury in heigh ...
" can be converted to SI units as long as attention is paid to the local factors of fluid density and
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. Temperature fluctuations change the value of fluid density, while location can affect gravity.
Although no longer preferred, these manometric units are still encountered in many fields.
Blood pressure is measured in millimetres of mercury (see
torr
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ).
Historically, one torr was intended to be the same as one " millimeter of merc ...
) in most of the world,
central venous pressure Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of the heart. CVP reflects the amount of blood returning to the heart and the ability of the heart to pump the blood back into the arterial system. CVP ...
and lung pressures in
centimeters of water are still common, as in settings for CPAP machines. Natural gas pipeline pressures are measured in
inches of water
Inches of water is a non- SI unit for pressure. It is also given as inches of water gauge (iwg or in.w.g.), inches water column (inch wc, in. WC, " wc, etc. or just wc or WC), inAq, Aq, or inHO. The units are conventionally used for measurement o ...
, expressed as "inches W.C."
Underwater divers
This is a list of underwater divers whose exploits have made them notable.
Underwater divers are people who take part in underwater diving activities – Underwater diving is practiced as part of an occupation, or for recreation, where t ...
use manometric units: the ambient pressure is measured in units of
metres sea water
The metre (or meter) sea water (msw) is a metric unit of pressure used in underwater diving. It is defined as one tenth of a bar.
The unit used in the US is the foot sea water (fsw), based on standard gravity and a sea-water density of 64&nb ...
(msw) which is defined as equal to one tenth of a bar.
The unit used in the US is the foot sea water (fsw), based on
standard gravity
The standard acceleration due to gravity (or standard acceleration of free fall), sometimes abbreviated as standard gravity, usually denoted by or , is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. ...
and a sea-water density of 64 lb/ft
3. According to the US Navy Diving Manual, one fsw equals 0.30643 msw, , or ,
though elsewhere it states that 33 fsw is (one atmosphere), which gives one fsw equal to about 0.445 psi. The msw and fsw are the conventional units for measurement of
diver pressure exposure used in
decompression tables
There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher ambient pressures.
Decompression o ...
and the unit of calibration for
pneumofathometer
Surface-supplied diving is diving using equipment supplied with breathing gas using a diver's umbilical from the surface, either from the shore or from a diving support vessel, sometimes indirectly via a diving bell. This is different from sc ...
s and
hyperbaric chamber
A diving chamber is a vessel for human occupation, which may have an entrance that can be sealed to hold an internal pressure significantly higher than ambient pressure, a pressurised gas system to control the internal pressure, and a supply of ...
pressure gauge
Pressure measurement is the measurement of an applied force by a fluid ( liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pres ...
s. Both msw and fsw are measured relative to normal atmospheric pressure.
In vacuum systems, the units
torr
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ).
Historically, one torr was intended to be the same as one " millimeter of merc ...
(millimeter of mercury),
micron
The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Un ...
(micrometer of mercury), and inch of mercury (
inHg
Inch of mercury (inHg and ″Hg) is a non- SI unit of measurement for pressure. It is used for barometric pressure in weather reports, refrigeration and aviation in the United States.
It is the pressure exerted by a column of mercury in heigh ...
) are most commonly used. Torr and micron usually indicates an absolute pressure, while inHg usually indicates a gauge pressure.
Atmospheric pressures are usually stated using hectopascal (hPa), kilopascal (kPa), millibar (mbar) or atmospheres (
atm). In American and Canadian engineering,
stress
Stress may refer to:
Science and medicine
* Stress (biology), an organism's response to a stressor such as an environmental condition
* Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
is often measured in
kip
Kip, KIP or kips may refer to:
Athletics
* Kip (artistic gymnastics), a basic skill on the women's uneven bars
* Kip (trampolining), a coaching skill used in trampolining
* Kip-up, an acrobatic manoeuvre used in martial arts and gymnastics
People ...
. Note that stress is not a true pressure since it is not
scalar
Scalar may refer to:
*Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers
* Scalar (physics), a physical quantity that can be described by a single element of a number field such ...
. In the
cgs system the unit of pressure was the
barye
The barye (symbol: Ba), or sometimes barad, barrie, bary, baryd, baryed, or barie, is the centimetre–gram–second (CGS) unit of pressure. It is equal to 1 dyne per square centimetre.
: = = = = =
See also
*Pasca ...
(ba), equal to 1 dyn·cm
−2. In the
mts system, the unit of pressure was the
pieze, equal to 1
sthene per square metre.
Many other hybrid units are used such as mmHg/cm
2 or grams-force/cm
2 (sometimes as
2">kg/cm2 without properly identifying the force units). Using the names kilogram, gram, kilogram-force, or gram-force (or their symbols) as a unit of force is prohibited in SI; the unit of force in SI is the newton (N).
Static and dynamic pressure
Static pressure
In fluid mechanics the term static pressure has several uses:
* In the design and operation of aircraft, ''static pressure'' is the air pressure in the aircraft's static pressure system.
* In fluid dynamics, many authors use the term ''static pres ...
is uniform in all directions, so pressure measurements are independent of direction in an immovable (static) fluid. Flow, however, applies additional pressure on surfaces perpendicular to the flow direction, while having little impact on surfaces parallel to the flow direction. This directional component of pressure in a moving (dynamic) fluid is called
dynamic pressure
In fluid dynamics, dynamic pressure (denoted by or and sometimes called velocity pressure) is the quantity defined by:Clancy, L.J., ''Aerodynamics'', Section 3.5
:q = \frac\rho\, u^2
where (in SI units):
* is the dynamic pressure in pascals ( ...
. An instrument facing the flow direction measures the sum of the static and dynamic pressures; this measurement is called the
total pressure In physics, the term total pressure may indicate two different quantities, both having the dimensions of a pressure:
For compressible flow the isentropic relations can be used (also valid for incompressible flow):
: p_t=p\left(1+\fracM^2\right)^ ...
or
stagnation pressure
In fluid dynamics, stagnation pressure is the static pressure at a stagnation point in a fluid flow.Clancy, L.J., ''Aerodynamics'', Section 3.5 At a stagnation point the fluid velocity is zero. In an incompressible flow, stagnation pressure is equ ...
. Since dynamic pressure is referenced to static pressure, it is neither gauge nor absolute; it is a differential pressure.
While static gauge pressure is of primary importance to determining net loads on pipe walls, dynamic pressure is used to measure flow rates and airspeed. Dynamic pressure can be measured by taking the differential pressure between instruments parallel and perpendicular to the flow.
Pitot-static tubes, for example perform this measurement on airplanes to determine airspeed. The presence of the measuring instrument inevitably acts to divert flow and create turbulence, so its shape is critical to accuracy and the calibration curves are often non-linear.
Applications
*
Altimeter
An altimeter or an altitude meter is an instrument used to measure the altitude of an object above a fixed level. The measurement of altitude is called altimetry, which is related to the term bathymetry, the measurement of depth under water. The m ...
*
Barometer
A barometer is a scientific instrument that is used to measure air pressure in a certain environment. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis ...
*
Depth gauge
A depth gauge is an instrument for measuring depth below a reference surface. They include depth gauges for underwater diving and similar applications, and engineering instruments used to measure the depth of holes and indentations from a refer ...
*
MAP sensor
The manifold absolute pressure sensor (MAP sensor) is one of the sensors used in an internal combustion engine's electronic control system.
Engines that use a MAP sensor are typically fuel injected. The manifold absolute pressure sensor provi ...
*
Pitot tube
A pitot ( ) tube (pitot probe) measures fluid flow velocity. It was invented by a French engineer, Henri Pitot, in the early 18th century, and was modified to its modern form in the mid-19th century by a French scientist, Henry Darcy. It ...
*
Sphygmomanometer
A sphygmomanometer ( ), a blood pressure monitor, or blood pressure gauge, is a device used to measure blood pressure, composed of an inflatable cuff to collapse and then release the artery under the cuff in a controlled manner, and a mercury (e ...
Instruments
Many instruments have been invented to measure pressure, with different advantages and disadvantages. Pressure range, sensitivity, dynamic response and cost all vary by several orders of magnitude from one instrument design to the next. The oldest type is the liquid column (a vertical tube filled with mercury) manometer invented by
Evangelista Torricelli
Evangelista Torricelli ( , also , ; 15 October 160825 October 1647) was an Italian physicist and mathematician, and a student of Galileo. He is best known for his invention of the barometer, but is also known for his advances in optics and work o ...
in 1643. The U-Tube was invented by
Christiaan Huygens
Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists of ...
in 1661.
Hydrostatic
Hydrostatic gauges (such as the mercury column manometer) compare pressure to the hydrostatic force per unit area at the base of a column of fluid. Hydrostatic gauge measurements are independent of the type of gas being measured, and can be designed to have a very linear calibration. They have poor dynamic response.
Piston
Piston-type gauges counterbalance the pressure of a fluid with a spring (for example
tire-pressure gauge
A tire-pressure gauge, or tyre-pressure gauge, is a pressure gauge used to measure the pressure of tires on a vehicle.
Since tires are rated for specific loads at certain pressure, it is important to keep the pressure of the tire at the opti ...
s of comparatively low accuracy) or a solid weight, in which case it is known as a
deadweight tester
A dead weight tester apparatus uses unknown traceable weights to apply pressure to a fluid for checking the accuracy of readings from a pressure gauge. A dead weight tester (DWT) is a calibration standard method that uses a piston cylinder on ...
and may be used for calibration of other gauges.
Liquid column (manometer)
Liquid-column gauges consist of a column of liquid in a tube whose ends are exposed to different pressures. The column will rise or fall until its weight (a force applied due to gravity) is in equilibrium with the pressure differential between the two ends of the tube (a force applied due to fluid pressure). A very simple version is a U-shaped tube half-full of liquid, one side of which is connected to the region of interest while the
reference
Reference is a relationship between objects in which one object designates, or acts as a means by which to connect to or link to, another object. The first object in this relation is said to ''refer to'' the second object. It is called a '' name'' ...
pressure (which might be the
atmospheric pressure
Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, 7 ...
or a vacuum) is applied to the other. The difference in liquid levels represents the applied pressure. The pressure exerted by a column of fluid of height ''h'' and density ''ρ'' is given by the hydrostatic pressure equation, ''P'' = ''hgρ''. Therefore, the pressure difference between the applied pressure ''P
a'' and the reference pressure ''P''
0 in a U-tube manometer can be found by solving . In other words, the pressure on either end of the liquid (shown in blue in the figure) must be balanced (since the liquid is static), and so .
In most liquid-column measurements, the result of the measurement is the height ''h'', expressed typically in mm, cm, or inches. The ''h'' is also known as the
pressure head
In fluid mechanics, pressure head is the height of a liquid column that corresponds to a particular pressure exerted by the liquid column on the base of its container. It may also be called static pressure head or simply static head (but not ''sta ...
. When expressed as a pressure head, pressure is specified in units of length and the measurement fluid must be specified. When accuracy is critical, the temperature of the measurement fluid must likewise be specified, because liquid density is a function of
temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature scales that historically have relied o ...
. So, for example, pressure head might be written "742.2 mm
Hg" or "4.2 in
H2O at 59 °F" for measurements taken with mercury or water as the manometric fluid respectively. The word "gauge" or "vacuum" may be added to such a measurement to distinguish between a pressure above or below the atmospheric pressure. Both mm of mercury and inches of water are common pressure heads, which can be converted to S.I. units of pressure using
unit conversion
Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors which change the measured quantity value without changing its effects.
Overview
The process ...
and the above formulas.
If the fluid being measured is significantly dense, hydrostatic corrections may have to be made for the height between the moving surface of the manometer working fluid and the location where the pressure measurement is desired, except when measuring differential pressure of a fluid (for example, across an
orifice plate An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow (in the latter two cases it is often called a ').
Description
An orifice plate is a thin plate with a hole in it, which is usually placed in ...
or venturi), in which case the density ρ should be corrected by subtracting the density of the fluid being measured.
Although any fluid can be used,
mercury is preferred for its high density (13.534 g/cm
3) and low
vapour pressure
Vapor pressure (or vapour pressure in English-speaking countries other than the US; see spelling differences) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases ...
. Its convex
meniscus
Meniscus may refer to:
*Meniscus (anatomy), crescent-shaped fibrocartilaginous structure that partly divides a joint cavity
*Meniscus (liquid)
The meniscus (plural: ''menisci'', from the Greek for "crescent") is the curve in the upper surface ...
is advantageous since this means there will be no pressure errors from
wetting
Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with th ...
the glass, though under exceptionally clean circumstances, the mercury will stick to glass and the barometer may become stuck (the mercury can sustain a
negative absolute pressure) even under a strong vacuum. For low pressure differences, light oil or water are commonly used (the latter giving rise to units of measurement such as
inches water gauge and
millimetres H2O). Liquid-column pressure gauges have a highly linear calibration. They have poor dynamic response because the fluid in the column may react slowly to a pressure change.
When measuring vacuum, the working liquid may evaporate and contaminate the vacuum if its
vapor pressure
Vapor pressure (or vapour pressure in English-speaking countries other than the US; see spelling differences) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phas ...
is too high. When measuring liquid pressure, a loop filled with gas or a light fluid can isolate the liquids to prevent them from mixing, but this can be unnecessary, for example, when mercury is used as the manometer fluid to measure differential pressure of a fluid such as water. Simple hydrostatic gauges can measure pressures ranging from a few
torr
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ).
Historically, one torr was intended to be the same as one " millimeter of merc ...
s (a few 100 Pa) to a few atmospheres (approximately ).
A single-limb liquid-column manometer has a larger reservoir instead of one side of the U-tube and has a scale beside the narrower column. The column may be inclined to further amplify the liquid movement. Based on the use and structure, following types of manometers are used
[ as: "fluidengineering.co.nr/Manometer.htm". At 1/2010 that took me to bad link. Types of fluid Manometers/ref>
# Simple manometer
# Micromanometer
# Differential manometer
# Inverted differential manometer
]
McLeod gauge
A McLeod gauge
A McLeod gauge is a scientific instrument used to measure very low pressures, down to 10−6 Torr (1.33 m Pa). It was invented in 1874 by Herbert McLeod (1841–1923). McLeod gauges were once commonly found attached to equipment that operates unde ...
isolates a sample of gas and compresses it in a modified mercury manometer until the pressure is a few millimetres of mercury. The technique is very slow and unsuited to continual monitoring, but is capable of good accuracy. Unlike other manometer gauges, the McLeod gauge reading is dependent on the composition of the gas, since the interpretation relies on the sample compressing as an ideal gas
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
. Due to the compression process, the McLeod gauge completely ignores partial pressures from non-ideal vapors that condense, such as pump oils, mercury, and even water if compressed enough.
: Useful range: from around 10−4 Torr (roughly 10−2 Pa) to vacuums as high as 10−6 Torr (0.1 mPa),
0.1 mPa is the lowest direct measurement of pressure that is possible with current technology. Other vacuum gauges can measure lower pressures, but only indirectly by measurement of other pressure-dependent properties. These indirect measurements must be calibrated to SI units by a direct measurement, most commonly a McLeod gauge.
Aneroid
Aneroid gauges are based on a metallic pressure-sensing element that flexes elastically under the effect of a pressure difference across the element. "Aneroid" means "without fluid", and the term originally distinguished these gauges from the hydrostatic gauges described above. However, aneroid gauges can be used to measure the pressure of a liquid as well as a gas, and they are not the only type of gauge that can operate without fluid. For this reason, they are often called mechanical gauges in modern language. Aneroid gauges are not dependent on the type of gas being measured, unlike thermal and ionization gauges, and are less likely to contaminate the system than hydrostatic gauges. The pressure sensing element may be a Bourdon tube, a diaphragm, a capsule, or a set of bellows, which will change shape in response to the pressure of the region in question. The deflection of the pressure sensing element may be read by a linkage connected to a needle, or it may be read by a secondary transducer. The most common secondary transducers in modern vacuum gauges measure a change in capacitance due to the mechanical deflection. Gauges that rely on a change in capacitance are often referred to as capacitance manometers.
Bourdon tube
The Bourdon pressure gauge uses the principle that a flattened tube tends to straighten or regain its circular form in cross-section when pressurized. (A party horn
A party horn (also a party blower, party pipe, party elephant, party blowout, noisemaker, party whistle, party honker, ta-doo-dah, noise popper, birthday kazoo, whizzer, blow tickler, tongue kazoo, or party snake) is a horn formed from a paper ...
illustrates this principle.) This change in cross-section may be hardly noticeable, involving moderate stress
Stress may refer to:
Science and medicine
* Stress (biology), an organism's response to a stressor such as an environmental condition
* Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
es within the elastic range of easily workable materials. The strain
Strain may refer to:
Science and technology
* Strain (biology), variants of plants, viruses or bacteria; or an inbred animal used for experimental purposes
* Strain (chemistry), a chemical stress of a molecule
* Strain (injury), an injury to a mu ...
of the material of the tube is magnified by forming the tube into a C shape or even a helix, such that the entire tube tends to straighten out or uncoil elastically as it is pressurized. Eugène Bourdon
Eugène Bourdon (1808–1884) was a French watchmaker and engineer. He is the inventor of the Bourdon tube pressure gauge for which he obtained a patent in 1849.
Biography
Eugène Bourdon was born in Paris on 8 April 1808, the son of a silk merch ...
patented his gauge in France in 1849, and it was widely adopted because of its superior simplicity, linearity, and accuracy; Bourdon is now part of the Baumer group and still manufacture Bourdon tube gauges in France. Edward Ashcroft purchased Bourdon's American patent rights in 1852 and became a major manufacturer of gauges. Also in 1849, Bernard Schaeffer in Magdeburg, Germany patented a successful diaphragm (see below) pressure gauge, which, together with the Bourdon gauge, revolutionized pressure measurement in industry. But in 1875 after Bourdon's patents expired, his company Schaeffer and Budenberg also manufactured Bourdon tube gauges.
In practice, a flattened thin-wall, closed-end tube is connected at the hollow end to a fixed pipe containing the fluid pressure to be measured. As the pressure increases, the closed end moves in an arc, and this motion is converted into the rotation of a (segment of a) gear by a connecting link that is usually adjustable. A small-diameter pinion gear is on the pointer shaft, so the motion is magnified further by the gear ratio
A gear train is a mechanical system formed by mounting gears on a frame so the teeth of the gears engage.
Gear teeth are designed to ensure the pitch circles of engaging gears roll on each other without slipping, providing a smooth transmission ...
. The positioning of the indicator card behind the pointer, the initial pointer shaft position, the linkage length and initial position, all provide means to calibrate the pointer to indicate the desired range of pressure for variations in the behavior of the Bourdon tube itself. Differential pressure can be measured by gauges containing two different Bourdon tubes, with connecting linkages (but is more usually measured via diaphragms or bellows and a balance system).
Bourdon tubes measures gauge pressure
Pressure measurement is the measurement of an applied force by a fluid ( liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pre ...
, relative to ambient atmospheric pressure, as opposed to absolute pressure
Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressu ...
; vacuum is sensed as a reverse motion. Some aneroid barometers use Bourdon tubes closed at both ends (but most use diaphragms or capsules, see below). When the measured pressure is rapidly pulsing, such as when the gauge is near a reciprocating pump, an orifice
An orifice is any opening, mouth, hole or vent, as in a pipe, a plate, or a body
* Body orifice, any opening in the body of a human or animal
*Orifice plate, a restriction used to measure flow or to control pressure or flow, sometimes given specia ...
restriction in the connecting pipe is frequently used to avoid unnecessary wear on the gears and provide an average reading; when the whole gauge is subject to mechanical vibration, the case (including the pointer and dial) can be filled with an oil or glycerin
Glycerol (), also called glycerine in British English and glycerin in American English, is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids known ...
. Typical high-quality modern gauges provide an accuracy of ±1% of span (Nominal diameter 100mm, Class 1 EN837-1), and a special high-accuracy gauge can be as accurate as 0.1% of full scale.
Force-balanced fused quartz Bourdon tube sensors work on the same principle but uses the reflection of a beam of light from a mirror to sense the angular displacement and current is applied to electromagnets to balance the force of the tube and bring the angular displacement back to zero, the current that is applied to the coils is used as the measurement. Due to the extremely stable and repeatable mechanical and thermal properties of quartz and the force balancing which eliminates nearly all physical movement these sensors can be accurate to around 1 PPM of full scale. Due to the extremely fine fused quartz structures which must be made by hand these sensors are generally limited to scientific and calibration purposes.
In the following illustrations of a compound gauge (vacuum and gauge pressure), the case and window has been removed to show only the dial, pointer and process connection. This particular gauge is a combination vacuum and pressure gauge used for automotive diagnosis:
* The left side of the face, used for measuring vacuum, is calibrated in inches of mercury
Inch of mercury (inHg and ″Hg) is a non- SI unit of measurement for pressure. It is used for barometric pressure in weather reports, refrigeration and aviation in the United States.
It is the pressure exerted by a column of mercury in heigh ...
on its outer scale and centimetres of mercury on its inner scale
* The right portion of the face is used to measure fuel pump
A fuel pump is a component in motor vehicles that transfers liquid from the fuel tank to the carburetor or fuel injector of the internal combustion engine.
Carbureted engines often use low pressure mechanical pumps that are mounted outside the f ...
pressure or turbo boost
Intel Turbo Boost is Intel's trade name for central processing units (CPUs) dynamic frequency scaling feature that automatically raises certain versions of its operating frequency when demanding tasks are running, thus enabling a higher resulting ...
and is scaled in pounds per square inch on its outer scale and kg/ cm2 on its inner scale.
=Mechanical details
=
Stationary parts:
* A: Receiver block. This joins the inlet pipe to the fixed end of the Bourdon tube (1) and secures the chassis plate (B). The two holes receive screws that secure the case.
* B: Chassis plate. The dial is attached to this. It contains bearing holes for the axles.
* C: Secondary chassis plate. It supports the outer ends of the axles.
* D: Posts to join and space the two chassis plates.
Moving parts:
# Stationary end of Bourdon tube. This communicates with the inlet pipe through the receiver block.
# Moving end of Bourdon tube. This end is sealed.
# Pivot and pivot pin
# Link joining pivot pin to lever (5) with pins to allow joint rotation
# Lever, an extension of the sector gear (7)
# Sector gear axle pin
# Sector gear
# Indicator needle axle. This has a spur gear that engages the sector gear (7) and extends through the face to drive the indicator needle. Due to the short distance between the lever arm link boss and the pivot pin and the difference between the effective radius of the sector gear and that of the spur gear, any motion of the Bourdon tube is greatly amplified. A small motion of the tube results in a large motion of the indicator needle.
# Hair spring to preload the gear train to eliminate gear lash and hysteresis
Diaphragm
A second type of aneroid gauge uses deflection
Deflection or deflexion may refer to:
Board games
* Deflection (chess), a tactic that forces an opposing chess piece to leave a square
* Khet (game), formerly ''Deflexion'', an Egyptian-themed chess-like game using lasers
Mechanics
* Deflection ...
of a flexible membrane
A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. B ...
that separates regions of different pressure. The amount of deflection is repeatable for known pressures so the pressure can be determined by using calibration. The deformation of a thin diaphragm is dependent on the difference in pressure between its two faces. The reference face can be open to atmosphere to measure gauge pressure, open to a second port to measure differential pressure, or can be sealed against a vacuum or other fixed reference pressure to measure absolute pressure. The deformation can be measured using mechanical, optical or capacitive techniques. Ceramic and metallic diaphragms are used.
:Useful range: above 10−2 Torr
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ).
Historically, one torr was intended to be the same as one " millimeter of merc ...
[Product brochure from Schoonover, Inc]
/ref> (roughly 1 Pa)
For absolute measurements, welded pressure capsules with diaphragms on either side are often used.
shape:
* Flat
* Corrugated
* Flattened tube
* Capsule
Bellows
In gauges intended to sense small pressures or pressure differences, or require that an absolute pressure be measured, the gear train and needle may be driven by an enclosed and sealed bellows chamber, called an aneroid. (Early barometer
A barometer is a scientific instrument that is used to measure air pressure in a certain environment. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis ...
s used a column of liquid such as water or the liquid metal mercury suspended by a vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
.) This bellows configuration is used in aneroid barometers (barometers with an indicating needle and dial card), altimeter
An altimeter or an altitude meter is an instrument used to measure the altitude of an object above a fixed level. The measurement of altitude is called altimetry, which is related to the term bathymetry, the measurement of depth under water. The m ...
s, altitude recording barograph
A barograph is a barometer that records the barometric pressure over time in graphical form. This instrument is also used to make a continuous recording of atmospheric pressure. The pressure-sensitive element, a partially evacuated metal cylinde ...
s, and the altitude telemetry
Telemetry is the in situ data collection, collection of measurements or other data at remote points and their automatic data transmission, transmission to receiving equipment (telecommunication) for monitoring. The word is derived from the Gr ...
instruments used in weather balloon radiosonde
A radiosonde is a battery-powered telemetry instrument carried into the atmosphere usually by a weather balloon that measures various atmospheric parameters and transmits them by radio to a ground receiver. Modern radiosondes measure or calcula ...
s. These devices use the sealed chamber as a reference pressure and are driven by the external pressure. Other sensitive aircraft instruments such as air speed indicators and rate of climb indicators (variometer
In aviation, a variometer – also known as a rate of climb and descent indicator (RCDI), rate-of-climb indicator, vertical speed indicator (VSI), or vertical velocity indicator (VVI) – is one of the flight instruments in an aircraft used to i ...
s) have connections both to the internal part of the aneroid chamber and to an external enclosing chamber.
Magnetic coupling
These gauges use the attraction of two magnets to translate differential pressure into motion of a dial pointer. As differential pressure increases, a magnet attached to either a piston or rubber diaphragm moves. A rotary magnet that is attached to a pointer then moves in unison. To create different pressure ranges, the spring rate can be increased or decreased.
Spinning-rotor gauge
The spinning-rotor gauge works by measuring how a rotating ball is slowed by the viscosity of the gas being measured. The ball is made of steel and is magnetically levitated inside a steel tube closed at one end and exposed to the gas to be measured at the other. The ball is brought up to speed (about 2500 or 3800 rad
RAD or Rad may refer to:
People
* Robert Anthony Rad Dougall (born 1951), South African former racing driver
* Rad Hourani, Canadian fashion designer and artist
* Nickname of Leonardus Rad Kortenhorst (1886–1963), Dutch politician
* Radley R ...
/s), and the deceleration rate is measured after switching off the drive, by electromagnetic transducers. The range of the instrument is 5−5 to 102 Pa (103 Pa with less accuracy). It is accurate and stable enough to be used as a secondary standard
In metrology (the science of measurement), a standard (or etalon) is an Realisation (metrology), object, system, or experiment that bears a defined relationship to a unit of measurement of a physical quantity. Standards are the fundamental refere ...
. During the last years this type of gauge became much more user friendly and easier to operate. In the past the instrument was famous to requires some skill and knowledge to use correctly. For high accuracy measurements various corrections must be applied and the ball must be spun at a pressure well below the intended measurement pressure for five hours before using. It is most useful in calibration and research laboratories where high accuracy is required and qualified technicians are available. Insulation vacuum monitoring of cryogenic liquids is a perfect suited application for this system too. With the inexpensive and long term stable, weldable sensor, that can be separated from the more costly electronics/read it is a perfect fit to all static vacuums.
Electronic pressure instruments
; Metal strain gauge
:The strain gauge is generally glued (foil strain gauge) or deposited (thin-film strain gauge) onto a membrane. Membrane deflection due to pressure causes a resistance change in the strain gauge which can be electronically measured.
; Piezoresistive strain gauge
:Uses the piezoresistive
The piezoresistive effect is a change in the electrical resistivity of a semiconductor or metal when mechanical strain is applied. In contrast to the piezoelectric effect, the piezoresistive effect causes a change only in electrical resistance, ...
effect of bonded or formed strain gauges to detect strain due to applied pressure.
; Piezoresistive silicon pressure sensor
:The sensor is generally a temperature compensated, piezoresistive
The piezoresistive effect is a change in the electrical resistivity of a semiconductor or metal when mechanical strain is applied. In contrast to the piezoelectric effect, the piezoresistive effect causes a change only in electrical resistance, ...
silicon pressure sensor chosen for its excellent performance and long-term stability. Integral temperature compensation is provided over a range of 0–50°C using laser-trimmed resistors. An additional laser-trimmed resistor is included to normalize pressure sensitivity variations by programming the gain of an external differential amplifier. This provides good sensitivity and long-term stability. The two ports of the sensor, apply pressure to the same single transducer, please see pressure flow diagram below.
This is an over-simplified diagram, but you can see the fundamental design of the internal ports in the sensor. The important item here to note is the "diaphragm" as this is the sensor itself. Please note that is it slightly convex in shape (highly exaggerated in the drawing); this is important as it affects the accuracy of the sensor in use.
The shape of the sensor is important because it is calibrated to work in the direction of air flow as shown by the RED arrows. This is normal operation for the pressure sensor, providing a positive reading on the display of the digital pressure meter. Applying pressure in the reverse direction can induce errors in the results as the movement of the air pressure is trying to force the diaphragm to move in the opposite direction. The errors induced by this are small, but can be significant, and therefore it is always preferable to ensure that the more positive pressure is always applied to the positive (+ve) port and the lower pressure is applied to the negative (-ve) port, for normal 'gauge pressure' application. The same applies to measuring the difference between two vacuums, the larger vacuum should always be applied to the negative (-ve) port.
The measurement of pressure via the Wheatstone Bridge looks something like this....
The effective electrical model of the transducer, together with a basic signal conditioning circuit, is shown in the application schematic. The pressure sensor is a fully active Wheatstone bridge which has been temperature compensated and offset adjusted by means of thick film, laser trimmed resistors. The excitation to the bridge is applied via a constant current. The low-level bridge output is at +O and -O, and the amplified span is set by the gain programming resistor (r). The electrical design is microprocessor controlled, which allows for calibration, the additional functions for the user, such as Scale Selection, Data Hold, Zero and Filter functions, the Record function that stores/displays MAX/MIN.
; Capacitive
:Uses a diaphragm and pressure cavity to create a variable capacitor
A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals.
The effect of ...
to detect strain due to applied pressure.
; Magnetic
:Measures the displacement of a diaphragm by means of changes in inductance
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the ...
(reluctance), LVDT
The linear variable differential transformer (LVDT) (also called linear variable displacement transformer, linear variable displacement transducer, or simply differential transformer) is a type of electrical transformer used for measuring linear d ...
, Hall effect
The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was dis ...
, or by eddy current
Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnet ...
principle.
; Piezoelectric
:Uses the piezoelectric
Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied Stress (mechanics), mechanical s ...
effect in certain materials such as quartz to measure the strain upon the sensing mechanism due to pressure.
; Optical
:Uses the physical change of an optical fiber to detect strain due to applied pressure.
; Potentiometric
:Uses the motion of a wiper along a resistive mechanism to detect the strain caused by applied pressure.
; Resonant
:Uses the changes in resonant frequency in a sensing mechanism to measure stress, or changes in gas density, caused by applied pressure.
Thermal conductivity
Generally, as a real gas
Real gases are nonideal gases whose molecules occupy space and have interactions; consequently, they do not adhere to the ideal gas law.
To understand the behaviour of real gases, the following must be taken into account:
*compressibility effect ...
increases in density -which may indicate an increase in pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
- its ability to conduct heat increases. In this type of gauge, a wire filament is heated by running current through it. A thermocouple
A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the ...
or resistance thermometer
Resistance thermometers, also called resistance temperature detectors (RTDs), are sensors used to measure temperature. Many RTD elements consist of a length of fine wire wrapped around a heat-resistant ceramic or glass core but other constructio ...
(RTD) can then be used to measure the temperature of the filament. This temperature is dependent on the rate at which the filament loses heat to the surrounding gas, and therefore on the thermal conductivity
The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa.
Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
. A common variant is the Pirani gauge
The Pirani gauge is a robust thermal conductivity gauge used for the measurement of the pressures in vacuum systems. It was invented in 1906 by Marcello Pirani.
Marcello Stefano Pirani was a German physicist working for Siemens & Halske which was ...
, which uses a single platinum filament as both the heated element and RTD. These gauges are accurate from 10−3 Torr to 10 Torr
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ).
Historically, one torr was intended to be the same as one " millimeter of merc ...
, but their calibration is sensitive to the chemical composition of the gases being measured.
Pirani (one wire)
A Pirani gauge
The Pirani gauge is a robust thermal conductivity gauge used for the measurement of the pressures in vacuum systems. It was invented in 1906 by Marcello Pirani.
Marcello Stefano Pirani was a German physicist working for Siemens & Halske which was ...
consists of a metal wire open to the pressure being measured. The wire is heated by a current flowing through it and cooled by the gas surrounding it. If the gas pressure is reduced, the cooling effect will decrease, hence the equilibrium temperature of the wire will increase. The resistance of the wire is a function of its temperature: by measuring the volt
The volt (symbol: V) is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827).
Defi ...
age across the wire and the current
Currents, Current or The Current may refer to:
Science and technology
* Current (fluid), the flow of a liquid or a gas
** Air current, a flow of air
** Ocean current, a current in the ocean
*** Rip current, a kind of water current
** Current (stre ...
flowing through it, the resistance (and so the gas pressure) can be determined. This type of gauge was invented by Marcello Pirani
Marcello Stefano Pirani (July 1, 1880 – January 11, 1968) was a German physicist known for his invention of the Pirani vacuum gauge, a vacuum gauge based on the principle of heat loss measurement. Throughout his career, he worked on advancing l ...
.
Two-wire
In two-wire gauges, one wire coil is used as a heater, and the other is used to measure temperature due to convection
Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
. Thermocouple gauges and thermistor gauges work in this manner using a thermocouple
A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the ...
or thermistor
A thermistor is a type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of ''thermal'' and ''resistor''.
Thermistors are divided based on their conduction ...
, respectively, to measure the temperature of the heated wire.
Ionization gauge
Ionization gauges are the most sensitive gauges for very low pressures (also referred to as hard or high vacuum). They sense pressure indirectly by measuring the electrical ions produced when the gas is bombarded with electrons. Fewer ions will be produced by lower density gases. The calibration of an ion gauge is unstable and dependent on the nature of the gases being measured, which is not always known. They can be calibrated against a McLeod gauge
A McLeod gauge is a scientific instrument used to measure very low pressures, down to 10−6 Torr (1.33 m Pa). It was invented in 1874 by Herbert McLeod (1841–1923). McLeod gauges were once commonly found attached to equipment that operates unde ...
which is much more stable and independent of gas chemistry.
Thermionic emission
Thermionic emission is the liberation of electrons from an electrode by virtue of its temperature (releasing of energy supplied by heat). This occurs because the thermal energy given to the charge carrier overcomes the work function of the mater ...
generates electrons, which collide with gas atoms and generate positive ion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s. The ions are attracted to a suitably biased electrode known as the collector. The current in the collector is proportional to the rate of ionization, which is a function of the pressure in the system. Hence, measuring the collector current gives the gas pressure. There are several sub-types of ionization gauge.
:Useful range: 10−10 - 10−3 torr (roughly 10−8 - 10−1 Pa)
Most ion gauges come in two types: hot cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
and cold cathode. In the hot cathode
In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating elemen ...
version, an electrically heated filament produces an electron beam. The electrons travel through the gauge and ionize gas molecules around them. The resulting ions are collected at a negative electrode. The current depends on the number of ions, which depends on the pressure in the gauge. Hot cathode gauges are accurate from 10−3 Torr to 10−10 Torr. The principle behind cold cathode
A cold cathode is a cathode that is not electrically heated by a filament.A negatively charged electrode emits electrons or is the positively charged terminal. For more, see field emission. A cathode may be considered "cold" if it emits more el ...
version is the same, except that electrons are produced in the discharge of a high voltage. Cold cathode gauges are accurate from 10−2 Torr
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ).
Historically, one torr was intended to be the same as one " millimeter of merc ...
to 10−9 Torr. Ionization gauge calibration is very sensitive to construction geometry, chemical composition of gases being measured, corrosion and surface deposits. Their calibration can be invalidated by activation at atmospheric pressure or low vacuum. The composition of gases at high vacuums will usually be unpredictable, so a mass spectrometer
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
must be used in conjunction with the ionization gauge for accurate measurement.
Hot cathode
A hot-cathode ionization gauge is composed mainly of three electrodes acting together as a triode
A triode is an electronic amplifying vacuum tube (or ''valve'' in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's ...
, wherein the cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
is the filament. The three electrodes are a collector or plate, a filament, and a grid
Grid, The Grid, or GRID may refer to:
Common usage
* Cattle grid or stock grid, a type of obstacle is used to prevent livestock from crossing the road
* Grid reference, used to define a location on a map
Arts, entertainment, and media
* News g ...
. The collector current is measured in picoamperes by an electrometer
An electrometer is an electrical instrument for measuring electric charge or electrical potential difference. There are many different types, ranging from historical handmade mechanical instruments to high-precision electronic devices. Modern ...
. The filament voltage to ground is usually at a potential of 30 volts, while the grid voltage at 180–210 volts DC, unless there is an optional electron bombardment
Electron ionization (EI, formerly known as electron impact ionization and electron bombardment ionization) is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of t ...
feature, by heating the grid, which may have a high potential of approximately 565 volts.
The most common ion gauge is the hot-cathode Bayard–Alpert gauge, with a small ion collector inside the grid. A glass envelope with an opening to the vacuum can surround the electrodes, but usually the nude gauge is inserted in the vacuum chamber directly, the pins being fed through a ceramic plate in the wall of the chamber. Hot-cathode gauges can be damaged or lose their calibration if they are exposed to atmospheric pressure or even low vacuum while hot. The measurements of a hot-cathode ionization gauge are always logarithmic.
Electrons emitted from the filament move several times in back-and-forth movements around the grid before finally entering the grid. During these movements, some electrons collide with a gaseous molecule to form a pair of an ion and an electron ( electron ionization). The number of these ions
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
is proportional to the gaseous molecule density multiplied by the electron current emitted from the filament, and these ions pour into the collector to form an ion current. Since the gaseous molecule density is proportional to the pressure, the pressure is estimated by measuring the ion current.
The low-pressure sensitivity of hot-cathode gauges is limited by the photoelectric effect. Electrons hitting the grid produce x-rays that produce photoelectric noise in the ion collector. This limits the range of older hot-cathode gauges to 10−8 Torr and the Bayard–Alpert to about 10−10 Torr. Additional wires at cathode potential in the line of sight between the ion collector and the grid prevent this effect. In the extraction type the ions are not attracted by a wire, but by an open cone. As the ions cannot decide which part of the cone to hit, they pass through the hole and form an ion beam. This ion beam can be passed on to a:
* Faraday cup
A Faraday cup is a metal (conductive) cup designed to catch charged particles in vacuum. The resulting current can be measured and used to determine the number of ions or electrons hitting the cup. The Faraday cup was named after Michael Fara ...
* Microchannel plate detector with Faraday cup
* Quadrupole mass analyzer
The quadrupole mass analyzer, originally conceived by Nobel Laureate Wolfgang Paul and his student Helmut Steinwedel, also known as quadrupole mass filter, is one type of mass analyzer used in mass spectrometry. As the name implies, it consists o ...
with Faraday cup
* Quadrupole mass analyzer
The quadrupole mass analyzer, originally conceived by Nobel Laureate Wolfgang Paul and his student Helmut Steinwedel, also known as quadrupole mass filter, is one type of mass analyzer used in mass spectrometry. As the name implies, it consists o ...
with microchannel plate detector and Faraday cup
* Ion len
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s and acceleration voltage and directed at a target to form a sputter gun. In this case a valve lets gas into the grid-cage.
Cold cathode
There are two subtypes of cold-cathode
A cold cathode is a cathode that is not electrically heated by a filament.A negatively charged electrode emits electrons or is the positively charged terminal. For more, see field emission. A cathode may be considered "cold" if it emits more ele ...
ionization gauges: the Penning gauge (invented by Frans Michel Penning
Frans Michel Penning (12 September 1894 – 6 December 1953) was a Dutch experimental physicist. He received his PhD from the University of Leiden in 1923, and studied low pressure gas discharges at the Philips Laboratory in Eindhoven, developing ...
), and the inverted magnetron, also called a Redhead gauge. The major difference between the two is the position of the anode
An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic is ...
with respect to the cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
. Neither has a filament, and each may require a DC potential of about 4 kV for operation. Inverted magnetrons can measure down to 1 Torr
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (). Thus one torr is exactly (≈ ).
Historically, one torr was intended to be the same as one " millimeter of merc ...
.
Likewise, cold-cathode gauges may be reluctant to start at very low pressures, in that the near-absence of a gas makes it difficult to establish an electrode current - in particular in Penning gauges, which use an axially symmetric magnetic field to create path lengths for electrons that are of the order of metres. In ambient air, suitable ion-pairs are ubiquitously formed by cosmic radiation; in a Penning gauge, design features are used to ease the set-up of a discharge path. For example, the electrode of a Penning gauge is usually finely tapered to facilitate the field emission of electrons.
Maintenance cycles of cold cathode gauges are, in general, measured in years, depending on the gas type and pressure that they are operated in. Using a cold cathode gauge in gases with substantial organic components, such as pump oil fractions, can result in the growth of delicate carbon films and shards within the gauge that eventually either short-circuit the electrodes of the gauge or impede the generation of a discharge path.
Dynamic transients
When fluid flows are not in equilibrium, local pressures may be higher or lower than the average pressure in a medium. These disturbances propagate from their source as longitudinal pressure variations along the path of propagation. This is also called sound. Sound pressure is the instantaneous local pressure deviation from the average pressure caused by a sound wave. Sound pressure can be measured using a microphone
A microphone, colloquially called a mic or mike (), is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and public ...
in air and a hydrophone
A hydrophone ( grc, ὕδωρ + φωνή, , water + sound) is a microphone designed to be used underwater for recording or listening to underwater sound. Most hydrophones are based on a piezoelectric transducer that generates an electric potenti ...
in water. The effective sound pressure is the root mean square
In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the ...
of the instantaneous sound pressure over a given interval of time. Sound pressures are normally small and are often expressed in units of microbar.
* frequency response of pressure sensors
* resonance
Calibration and standards
The American Society of Mechanical Engineers (ASME) has developed two separate and distinct standards on pressure measurement, B40.100 and PTC 19.2. B40.100 provides guidelines on Pressure Indicated Dial Type and Pressure Digital Indicating Gauges, Diaphragm Seals, Snubbers, and Pressure Limiter Valves. PTC 19.2 provides instructions and guidance for the accurate determination of pressure values in support of the ASME Performance Test Codes. The choice of method, instruments, required calculations, and corrections to be applied depends on the purpose of the measurement, the allowable uncertainty, and the characteristics of the equipment being tested.
The methods for pressure measurement and the protocols used for data transmission are also provided. Guidance is given for setting up the instrumentation and determining the uncertainty of the measurement. Information regarding the instrument type, design, applicable pressure range, accuracy, output, and relative cost is provided. Information is also provided on pressure-measuring devices that are used in field environments i.e., piston gauges, manometers, and low-absolute-pressure (vacuum) instruments.
These methods are designed to assist in the evaluation of measurement uncertainty based on current technology and engineering knowledge, taking into account published instrumentation specifications and measurement and application techniques. This Supplement provides guidance in the use of methods to establish the pressure-measurement uncertainty.
European (CEN) Standard
* EN 472 : Pressure gauge - Vocabulary.
* EN 837-1 : Pressure gauges. Bourdon tube pressure gauges. Dimensions, metrology, requirements and testing.
* EN 837-2 : Pressure gauges. Selection and installation recommendations for pressure gauges.
* EN 837-3 : Pressure gauges. Diaphragm and capsule pressure gauges. Dimensions, metrology, requirements, and testing.
US
ASME
The American Society of Mechanical Engineers (ASME) is an American professional association that, in its own words, "promotes the art, science, and practice of multidisciplinary engineering and allied sciences around the globe" via "continuing ...
Standards
* B40.100-2013: Pressure gauges and Gauge attachments.
* PTC 19.2-2010 : The Performance test code for pressure measurement.
See also
* Air core gauge
An air core gauge is a specific type of rotary actuator in an analog display gauge that allows an indicator to rotate a full 360 degrees. It is used in gauges and displays, most commonly automotive instrument clusters.
A typical automotive app ...
*Deadweight tester
A dead weight tester apparatus uses unknown traceable weights to apply pressure to a fluid for checking the accuracy of readings from a pressure gauge. A dead weight tester (DWT) is a calibration standard method that uses a piston cylinder on ...
*Force gauge
A force gauge (also called a force meter) is a measuring instrument used to measure forces. Applications exist in research and development, laboratory, quality, production and field environment. There are two kinds of force gauges today: mechanical ...
*Gauge
Gauge ( or ) may refer to:
Measurement
* Gauge (instrument), any of a variety of measuring instruments
* Gauge (firearms)
* Wire gauge, a measure of the size of a wire
** American wire gauge, a common measure of nonferrous wire diameter, ...
* Isoteniscope
An Isoteniscope is a measuring device used to measure the vapor pressure of liquids. It consists of a submerged manometer
Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typic ...
*Piezometer
A piezometer is either a device used to measure liquid pressure in a system by measuring the height to which a column of the liquid rises against gravity, or a device which measures the pressure (more precisely, the piezometric head) of groundwa ...
*Sphygmomanometer
A sphygmomanometer ( ), a blood pressure monitor, or blood pressure gauge, is a device used to measure blood pressure, composed of an inflatable cuff to collapse and then release the artery under the cuff in a controlled manner, and a mercury (e ...
* Time pressure gauge A time pressure gauge is an instrument that digitally displays pressure data divided into appropriate time intervals. While a pressure gauge indicates a general unit amount, only a time pressure gauge accounts for varying consumption and capacity in ...
* Tire-pressure gauge
A tire-pressure gauge, or tyre-pressure gauge, is a pressure gauge used to measure the pressure of tires on a vehicle.
Since tires are rated for specific loads at certain pressure, it is important to keep the pressure of the tire at the opti ...
*Vacuum engineering
Vacuum engineering deals with technological processes and equipment that use vacuum to achieve better results than those run under atmospheric pressure. The most widespread applications of vacuum technology are:
* Pyrolytic chromium carbide coatin ...
References
Sources
*
External links
{{EB1911 poster, Manometer
Home Made Manometer
Underwater diving safety equipment
Vacuum