HOME

TheInfoList



OR:

Presolar grains are interstellar solid matter in the form of tiny solid grains that originated at a time before the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
was formed. Presolar grains formed within outflowing and cooling gases from earlier presolar stars. The study of presolar grains is typically considered part of the field of
cosmochemistry Cosmochemistry () or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. This is done primarily through the study of the chemical composition of meteorites and ot ...
and
meteoritics Meteoritics is the science that deals with meteors, meteorites, and meteoroids. It is closely connected to cosmochemistry, mineralogy and geochemistry. A specialist who studies meteoritics is known as a ''meteoriticist''. Scientific research in ...
. The
stellar nucleosynthesis In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
that took place within each presolar star gives to each granule an isotopic composition unique to that parent star, which differs from the isotopic composition of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
's matter as well as from the galactic average. These
isotopic signature An isotopic signature (also isotopic fingerprint) is a ratio of non-radiogenic ' stable isotopes', stable radiogenic isotopes, or unstable radioactive isotopes of particular elements in an investigated material. The ratios of isotopes in a sample ...
s often fingerprint very specific astrophysical nuclear processes that took place within the parent star or formation event and prove their presolar origin.


Terminology

Presolar grains are individual solid grains which condensed around distant stars or as part of
novae A nova ( novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", Latin for "new") that slowly fades over weeks or months. All observed novae involve white ...
, and potentially
supernovae A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original ob ...
outflows, which were accreted in the early
solar nebula There is evidence that the formation of the Solar System began about 4.6 bya, billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, whil ...
and remain in relatively unaltered chondritic meteorites. As they were accreted before the formation of the Solar System, they must be presolar. Presolar grains also exist in the
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
. Researchers occasionally use the term ''stardust'' to refer to presolar grains, particularly in
science communication Science communication encompasses a wide range of activities that connect science and society. Common goals of science communication include informing non-experts about scientific findings, raising the Public awareness of science, public awar ...
, though the term is sometimes used interchangeably in the scientific literature.


History

In the 1960s, the noble gases
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
and
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
were discovered to have unusual
isotopic ratio In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atom ...
s in primitive meteorites; their origin and the type of matter that contained them was a mystery. These discoveries were made by vaporizing a bulk sample of a meteorite within a
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
, in order to count the relative abundance of the
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s of the very small amount of
noble gas The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of Group (periodic table), group 18 of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) and, in some ...
es trapped as inclusions. During the 1970s similar experiments discovered more components of trapped xenon isotopes. Competing speculations about the origins of the xenon isotopic components were advanced, all within the existing paradigm that the variations were created by processes within an initially homogeneous solar gas cloud. A new theoretical framework for interpretation was advanced during the 1970s when Donald D. Clayton rejected the popular belief among meteoriticists that the Solar System began as a uniform hot gas. Instead he predicted that unusual but predictable isotopic compositions would be found within thermally condensed interstellar grains that had condensed during mass loss from stars of differing types. He argued that such grains exist throughout the interstellar medium. This paper was submitted in 1975 to Geochim. et Cosmochim Acta but was judged at that time to not be relevant to geochemistry. It was resubmitted to Astrophys J in 1978 after Edward Anders stated that he had discovered the pure s-process xenon gas in a bulk carbonaceous residue off a meteorite. Clayton's first papers using that idea in 1975 pictured an interstellar medium populated with supernova grains that are rich in the radiogenic isotopes of Ne and Xe that had defined the extinct radioactivities. Clayton defined several types of presolar grains likely to be discovered: ''stardust'' from red giant stars, ''sunocons'' (acronym from ''SU''per''NO''va ''CON''densates) from
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e, ''nebcons'' from nebular condensation by accretion of cold cloud gaseous atoms and molecules, and ''novacons'' from
nova A nova ( novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", Latin for "new") that slowly fades over weeks or months. All observed novae involve white ...
condensation. Despite vigorous and continuous active development of this picture, Clayton's suggestions lay unsupported by others for a decade until such grains were discovered within meteorites. The first unambiguous consequence of the existence of presolar grains within meteorites came from the laboratory of Edward Anders in Chicago, who found using traditional mass spectrometry that the xenon isotopic abundances contained within an acid-insoluble carbonaceous residue that remained after the meteorite bulk had been dissolved in acids matched almost exactly the predictions for isotopic xenon in
red giant A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The stellar atmosphere, outer atmosphere is inflated and tenuous, making the radius large and the surface t ...
dust condensate. It then seemed certain that presolar grains were contained within Anders' acid-insoluble residue. Finding the actual presolar grains and documenting them was a much harder challenge that required locating the grains and showing that their isotopes matched those within the red-giant star. There followed a decade of intense experimental searching in the attempt to isolate individual grains of those xenon carriers. But what was really needed to discover presolar grains was a new type of mass spectrometer that could measure the smaller number of atoms in a single grain. Sputtering ion probes were pursued by several laboratories in the attempt to demonstrate such an instrument. But the contemporary ion probes needed to be technologically much better. In 1987 diamond grains and silicon carbide grains were found to exist abundantly in those same acid-insoluble residues and also to contain large concentrations of noble gases. Significant isotopic anomalies were in turn measured by improvements in
secondary ion mass spectrometry Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions ...
(SIMS) within the structural chemical elements of these grains. Improved SIMS experiments showed that the silicon isotopes within each SiC grain did not have solar isotopic ratios but rather those expected in certain red-giant stars. The finding of presolar is therefore dated 1987. To measure the isotopic abundance ratios of the structural elements (e.g. silicon in an SiC grain) in microscopic presolar grains had required two difficult technological and scientific steps: 1) locating micron-sized presolar grains within the meteorite's overwhelming mass; 2) development of SIMS technology to a sufficiently high level to measure isotopic abundance ratios within micron-sized grains.
Ernst Zinner Ernst Zinner (2 February 1886 in Goldberg, Silesia – 30 August 1970) was a German astronomer and noted historian of astronomy. He was a director of the observatory at Bamberg. His major work was on the diffusion of Copernican ideas. Duri ...
became an important leader in SIMS applications to microscopic grains. In January 2020, analysis of the
Murchison meteorite The Murchison meteorite is a meteorite that fell in Australia in 1969 near Murchison, Victoria. It belongs to the carbonaceous chondrite class, a group of meteorites rich in organic compounds. Due to its mass (over ) and the fact that it was ...
concluded that out of 40 presolar
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
grains examined, one had formed 3 ± 2 billion years before Earth's 4.6 billion year-old sun. This would make some of the grains the oldest solid material ever discovered on Earth.


In meteorites

Presolar grains are the solid matter that was contained in the interstellar gas before the Sun formed. The presolar component can be identified in the laboratory by their abnormal isotopic abundances and consists of
refractory In materials science, a refractory (or refractory material) is a material that is resistant to decomposition by heat or chemical attack and that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compound ...
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Mi ...
s which survived the collapse of the solar
nebula A nebula (; or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the Pillars of Creation in ...
and the subsequent formation of
planetesimal Planetesimals () are solid objects thought to exist in protoplanetary disks and debris disks. Believed to have formed in the Solar System about 4.6 billion years ago, they aid study of its formation. Formation A widely accepted theory of pla ...
s. To meteorite researchers, the term presolar grains has come to mean presolar grains found in meteorites, of which 99% are stardust. Many other types of
cosmic dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
have not been detected in meteorites. Presolar grains comprise only about 0.1 percent of the total mass of particulate matter found in meteorites. Such grains are isotopically-distinct material found in the fine-grained
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
of
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s, such as primitive
chondrite A chondrite is a stony (non-metallic) meteorite that has not been modified by either melting or planetary differentiation, differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar Syste ...
s. Their isotopic differences from the encasing meteorite require that they predate the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
. The
crystallinity Crystallinity refers to the degree of structural order in a solid. In a crystal, the atoms or molecules are arranged in a regular, periodic manner. The degree of crystallinity has a large influence on hardness, density, transparency and diffusi ...
of those clusters ranges from micrometer-sized
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
crystals (up to 1013 atoms), down to that of nanometer-sized diamond (about 1000 atoms), and unlayered
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
crystals of fewer than 100 atoms. The refractory grains achieved their mineral structures by condensing thermally within the slowly cooling expanding gases of
supernovae A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original ob ...
and of
red giant A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The stellar atmosphere, outer atmosphere is inflated and tenuous, making the radius large and the surface t ...
stars.


Characterization

Presolar grains are investigated using scanning or transmission
electron microscope An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing it ...
s (SEM/TEM), and mass spectrometric methods (noble gas mass spectrometry, resonance ionization mass spectrometry (RIMS),
secondary ion mass spectrometry Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions ...
(SIMS, NanoSIMS)). Presolar grains that consist of diamonds are only a few nanometers in size and are, therefore, called nanodiamonds. Because of their small size, nanodiamonds are hard to investigate and, although they are among the first presolar grains discovered, relatively little is known about them. The typical sizes of other presolar grains are in the range of micrometers. Presolar grains consisting of the following minerals have so far been identified: *
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of e ...
(C) nanometer-sized grains (~ diameter) possibly formed by vapor deposition *
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
(C) particles and anions, some with unlayered
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
cores *
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
(SiC) submicrometer to micrometer sized grains. Presolar SiC occurs as single-polytype grains or polytype intergrowths. The atomic structures observed contain the two lowest order polytypes: hexagonal 2H and cubic 3C (with varying degrees of stacking fault disorder) as well as 1-dimensionally disordered SiC grains. In comparison, SiC synthesized in terrestrial laboratories is known to form over a hundred polytypes. *
titanium carbide Titanium carbide, Ti C, is an extremely hard ( Mohs 9–9.5) refractory ceramic material, similar to tungsten carbide. It has the appearance of black powder with the sodium chloride (face-centered cubic) crystal structure. It occurs in natur ...
(TiC) and other carbides within C and SiC grains *
silicon nitride Silicon nitride is a chemical compound of the elements silicon and nitrogen. (''Trisilicon tetranitride'') is the most thermodynamically stable and commercially important of the silicon nitrides, and the term ″''Silicon nitride''″ commonly re ...
() *
corundum Corundum is a crystalline form of aluminium oxide () typically containing traces of iron, titanium, vanadium, and chromium. It is a rock (geology), rock-forming mineral. It is a naturally transparency and translucency, transparent material, but ...
() *
spinel Spinel () is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula in the cubic crystal system. Its name comes from the Latin word , a diminutive form of ''spine,'' in reference to its pointed crystals. Prop ...
() *
hibonite Hibonite is a mineral with the chemical formula , occurring in various colours, with a hardness of 7.5–8.0 and a hexagonal crystal structure. It is rare, but is found in high-grade metamorphic rocks on Madagascar. Some presolar grains in primit ...
() *
titanium oxide Titanium oxide may refer to: * Titanium dioxide (titanium(IV) oxide), TiO2 * Titanium(II) oxide (titanium monoxide), TiO, a non-stoichiometric oxide * Titanium(III) oxide (dititanium trioxide), Ti2O3 * Ti3O * Ti2O * δ-TiOx (x= 0.68–0.75) * Ti ...
() *
silicate mineral Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, the crystalline forms of silica (silicon dio ...
s (
olivine The mineral olivine () is a magnesium iron Silicate minerals, silicate with the chemical formula . It is a type of Nesosilicates, nesosilicate or orthosilicate. The primary component of the Earth's upper mantle (Earth), upper mantle, it is a com ...
and
pyroxene The pyroxenes (commonly abbreviated Px) are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula , where X represents ions of calcium (Ca), sodium (Na), iron ( ...
)


Information on stellar evolution

The study of presolar grains provides information about
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
and
stellar evolution Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is consi ...
. Grains bearing the isotopic signature of "
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
" (rapid neutron capture) and
alpha process The alpha process, also known as alpha capture or the alpha ladder, is one of two classes of nuclear fusion reactions by which stars convert helium into heavier elements. The other class is a cycle of reactions called the triple-alpha process, w ...
(alpha capture) types of nucleosynthesis are useful in testing models of
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
explosions. 1% of presolar grains (supernova grains) have very large excesses of calcium-44, a stable isotope of calcium which normally composes only 2% of the calcium abundance. The calcium in some presolar grains is composed primarily of 44Ca, which is presumably the remains of the
extinct radionuclide An extinct radionuclide is a radionuclide that was formed by nucleosynthesis before the formation of the Solar System, about 4.6 billion years ago, but has since decayed to virtually zero abundance and is no longer detectable as a primordial nu ...
titanium-44, a titanium isotope which is formed in abundance in
Type II supernova A Type II supernova or SNII (plural: ''supernovae'') results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type ...
e such as
SN 1987A SN 1987A was a Type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos ...
after rapid capture of four alpha particles by 28Si, after the process of silicon burning normally begins, and prior to the supernova explosion. However, 44Ti has a half-life of only 59 years, and thus it is soon converted entirely to 44Ca. Excesses of the decay products of the longer-lived, but extinct,
nuclide Nuclides (or nucleides, from nucleus, also known as nuclear species) are a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by the A ...
s calcium-41 (half-life 99,400 years) and
aluminium-26 Aluminium-26 (26Al, Al-26) is a radioactive isotope of the chemical element aluminium, decaying by either positron emission or electron capture to stable magnesium-26. The half-life of 26Al is 717,000 years. This is far too short for the isotope ...
(730,000 years) have also been detected in such grains. The rapid-process isotopic anomalies of these grains include relative excesses of
nitrogen-15 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Thirteen radioisotopes are also known, with atomic masses ranging from 9 to 23, ...
and
oxygen-18 Oxygen-18 (, Ω) is a natural, stable isotope of oxygen and one of the environmental isotopes. is an important precursor for the production of fluorodeoxyglucose (FDG) used in positron emission tomography (PET). Generally, in the radiopharm ...
relative to Solar System abundances, as well as excesses of the neutron-rich
stable nuclide Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionu ...
s 42Ca and 49Ti. Other presolar grains provide isotopic and physical information on asymptotic giant branch stars (AGB stars), which have manufactured the largest portion of the refractory elements lighter than iron in the galaxy. Because the elements in these particles were made at different times (and places) in the early
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
, the set of collected particles further provides insight into galactic evolution prior to the formation of the Solar System. In addition to providing information on nucleosynthesis of the grain's elements, solid grains provide information on the physico-chemical conditions under which they condensed, and on events subsequent to their formation. For example, consider
red giant A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The stellar atmosphere, outer atmosphere is inflated and tenuous, making the radius large and the surface t ...
s — which produce much of the carbon in our galaxy. Their atmospheres are cool enough for condensation processes to take place, resulting in the precipitation of solid particles (i.e., multiple atom agglomerations of elements such as carbon) in their atmosphere. This is unlike the atmosphere of the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
, which is too hot to allow atoms to build up into more complex molecules. These solid fragments of matter are then injected into the interstellar medium by
radiation pressure Radiation pressure (also known as light pressure) is mechanical pressure exerted upon a surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of ...
. Hence, particles bearing the signature of stellar nucleosynthesis provide information on (i) condensation processes in red giant atmospheres, (ii) radiation and heating processes in the
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
, and (iii) the types of particles that carried the elements of which we are made, across the galaxy to the Solar System.


See also

*
Circumstellar dust Circumstellar dust is cosmic dust around a star. It can be in the form of a spherical shell or a disc, e.g. an accretion disk. Circumstellar dust can be responsible for significant extinction and is usually the source of an infrared excess for sta ...
*
Cosmic dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
*
Cosmochemistry Cosmochemistry () or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. This is done primarily through the study of the chemical composition of meteorites and ot ...
* Extraterrestrial diamonds *
Extraterrestrial materials Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, ...
*
Glossary of meteoritics This is a glossary of terms used in meteoritics, the science of meteorites. # * 2 Pallas – an asteroid from the asteroid belt and one of the likely parent bodies of the CR meteorites. * 4 Vesta – second-largest asteroid in the asteroid bel ...
*
Interplanetary dust cloud The interplanetary dust cloud, or zodiacal cloud (as the source of the zodiacal light), consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar Sys ...
* List of meteorite minerals


References


External links


Presolar grain research
{{portal bar, Chemistry, Physics, Space Cosmic dust Interstellar media Meteorite mineralogy and petrology Meteorite minerals Nucleosynthesis