In
mathematics, an algebraic number field (or simply number field) is an
extension field
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
of the
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s such that the
field extension has
finite degree (and hence is an
algebraic field extension).
Thus
is a field that contains
and has finite
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
when considered as a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
over
The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of
algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods.
Definition
Prerequisites
The notion of algebraic number field relies on the concept of a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
. A field consists of a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
of elements together with two operations, namely
addition, and
multiplication, and some distributivity assumptions. A prominent example of a field is the field of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s, commonly denoted together with its usual operations of addition and multiplication.
Another notion needed to define algebraic number fields is
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
s. To the extent needed here, vector spaces can be thought of as consisting of sequences (or
tuple
In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
s)
:(''x''
1, ''x''
2, …)
whose entries are elements of a fixed field, such as the field Any two such sequences can be added by adding the entries one per one. Furthermore, any sequence can be multiplied by a single element ''c'' of the fixed field. These two operations known as
vector addition
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors a ...
and
scalar multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector b ...
satisfy a number of properties that serve to define vector spaces abstractly. Vector spaces are allowed to be "infinite-dimensional", that is to say that the sequences constituting the vector spaces are of infinite length. If, however, the vector space consists of ''finite'' sequences
:(''x''
1, ''x''
2, …, ''x''
''n''),
the vector space is said to be of finite
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
, ''n''.
Definition
An algebraic number field (or simply number field) is a finite-
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathematics
...
field extension of the field of rational numbers. Here degree means the dimension of the field as a vector space over
Examples
* The smallest and most basic number field is the field of rational numbers. Many properties of general number fields are modeled after the properties of At the same time, many other properties of algebraic number fields are substantially different from the properties of rational numbers - one notable example is that the ring of algebraic integers of a number field is not a principal ideal domain, in general.
* The
Gaussian rational
In mathematics, a Gaussian rational number is a complex number of the form ''p'' + ''qi'', where ''p'' and ''q'' are both rational numbers.
The set of all Gaussian rationals forms the Gaussian rational field, denoted Q(''i''), obtained b ...
s, denoted
(read as "
adjoined "), form the first (historically) non-trivial example of a number field. Its elements are elements of the form
where both ''a'' and ''b'' are rational numbers and ''i'' is the
imaginary unit
The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
. Such expressions may be added, subtracted, and multiplied according to the usual rules of arithmetic and then simplified using the identity
Explicitly,
Non-zero Gaussian rational numbers are
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is ...
, which can be seen from the identity
It follows that the Gaussian rationals form a number field which is two-dimensional as a vector space over
* More generally, for any
square-free {{no footnotes, date=December 2015
In mathematics, a square-free element is an element ''r'' of a unique factorization domain ''R'' that is not divisible by a non-trivial square. This means that every ''s'' such that s^2\mid r is a unit of ''R''.
A ...
integer the
quadratic field
In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers.
Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 a ...
is a number field obtained by adjoining the square root of
to the field of rational numbers. Arithmetic operations in this field are defined in analogy with the case of Gaussian rational numbers,
*
The cyclotomic field where
is a number field obtained from
by adjoining a primitive
th root of unity
. This field contains all complex ''n''th roots of unity and its dimension over
is equal to
, where
is the
Euler totient function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In o ...
.
Non-Examples
* The
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s, and the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s, are fields which have infinite dimension as
-vector spaces, hence, they are ''not'' number fields. This follows from the
uncountability of
and
as sets, whereas every number field is necessarily
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
.
* The set
of
ordered pairs of rational numbers, with the entry-wise addition and multiplication is a two-dimensional commutative algebra over However, it is not a field, since it has
zero divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zer ...
s:
Algebraicity, and ring of integers
Generally, in
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathe ...
, a field extension
is
algebraic if every element
of the bigger field
is the zero of a
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
with coefficients
in
:
Every field extension of finite degree is algebraic. (Proof: for
in simply consider
– we get a linear dependence, i.e. a polynomial that
is a root of.) In particular this applies to algebraic number fields, so any element
of an algebraic number field
can be written as a zero of a polynomial with rational coefficients. Therefore, elements of
are also referred to as ''
algebraic numbers
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
''. Given a polynomial
such that
, it can be arranged such that the leading coefficient
is one, by dividing all coefficients by it, if necessary. A polynomial with this property is known as a
monic polynomial
In algebra, a monic polynomial is a single-variable polynomial (that is, a univariate polynomial) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. Therefore, a monic polynomial has the form:
:x^n+c_x^+\c ...
. In general it will have rational coefficients.
If, however, its coefficients are actually all integers,
is called an ''
algebraic integer
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
''.
Any (usual) integer
is an algebraic integer, as it is the zero of the linear monic polynomial:
:
.
It can be shown that any algebraic integer that is also a rational number must actually be an integer, hence the name "algebraic integer". Again using abstract algebra, specifically the notion of a
finitely generated module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type.
Related concepts in ...
, it can be shown that the sum and the product of any two algebraic integers is still an algebraic integer. It follows that the algebraic integers in
form a
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
denoted
called the
ring of integers of It is a
subring of (that is, a ring contained in) A field contains no
zero divisors
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero ...
and this property is inherited by any subring, so the ring of integers of
is an
integral domain
In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
. The field
is the
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
of the integral domain This way one can get back and forth between the algebraic number field
and its ring of integers Rings of algebraic integers have three distinctive properties: firstly,
is an integral domain that is
integrally closed in its field of fractions Secondly,
is a
Noetherian ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
. Finally, every nonzero
prime ideal of
is
maximal or, equivalently, the
Krull dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally th ...
of this ring is one. An abstract commutative ring with these three properties is called a ''
Dedekind ring
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
'' (or ''Dedekind domain''), in honor of
Richard Dedekind, who undertook a deep study of rings of algebraic integers.
Unique factorization
For general
Dedekind ring
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
s, in particular rings of integers, there is a unique factorization of
ideals into a product of
prime ideals. For example, the ideal
in the ring