Positional Specifications
   HOME

TheInfoList



OR:

Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as
Roman numerals Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, eac ...
, a digit has only one value: I means one, X means ten and C a hundred (however, the value may be negated if placed before another digit). In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string. The Babylonian numeral system, base 60, was the first positional system to be developed, and its influence is present today in the way time and angles are counted in tallies related to 60, such as 60 minutes in an hour and 360 degrees in a circle. Today, the Hindu–Arabic numeral system ( base ten) is the most commonly used system globally. However, the
binary numeral system A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" ( one). The base-2 numeral system is a positional notatio ...
(base two) is used in almost all
computer A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as C ...
s and electronic devices because it is easier to implement efficiently in
electronic circuit An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical ...
s. Systems with negative base, complex base or negative digits have been described. Most of them do not require a minus sign for designating negative numbers. The use of a radix point (decimal point in base ten), extends to include fractions and allows representing any real number with arbitrary accuracy. With positional notation, arithmetical computations are much simpler than with any older numeral system; this led to the rapid spread of the notation when it was introduced in western Europe.


History

Today, the base-10 (
decimal The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
) system, which is presumably motivated by counting with the ten fingers, is ubiquitous. Other bases have been used in the past, and some continue to be used today. For example, the Babylonian numeral system, credited as the first positional numeral system, was base-60. However, it lacked a real zero. Initially inferred only from context, later, by about 700 BC, zero came to be indicated by a "space" or a "punctuation symbol" (such as two slanted wedges) between numerals. It was a
placeholder Placeholder may refer to: Language * Placeholder name, a term or terms referring to something or somebody whose name is not known or, in that particular context, is not significant or relevant. * Filler text, text generated to fill space or provi ...
rather than a true zero because it was not used alone or at the end of a number. Numbers like 2 and 120 (2×60) looked the same because the larger number lacked a final placeholder. Only context could differentiate them. The polymath
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
(ca. 287–212 BC) invented a decimal positional system in his Sand Reckoner which was based on 108 and later led the German mathematician Carl Friedrich Gauss to lament what heights science would have already reached in his days if Archimedes had fully realized the potential of his ingenious discovery. Before positional notation became standard, simple additive systems ( sign-value notation) such as
Roman numerals Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, eac ...
were used, and accountants in ancient Rome and during the Middle Ages used the abacus or stone counters to do arithmetic. Counting rods and most abacuses have been used to represent numbers in a positional numeral system. With counting rods or abacus to perform arithmetic operations, the writing of the starting, intermediate and final values of a calculation could easily be done with a simple additive system in each position or column. This approach required no memorization of tables (as does positional notation) and could produce practical results quickly. The oldest extant positional notation system is either that of Chinese
rod numerals Counting rods () are small bars, typically 3–14 cm long, that were used by mathematicians for calculation in ancient East Asia. They are placed either horizontally or vertically to represent any integer or rational number. The written fo ...
, used from at least the early 8th century, or perhaps Khmer numerals, showing possible usages of positional-numbers in the 7th century. Khmer numerals and other Indian numerals originate with the Brahmi numerals of about the 3rd century BC, which symbols were, at the time, not used positionally. Medieval Indian numerals are positional, as are the derived
Arabic numerals Arabic numerals are the ten numerical digits: , , , , , , , , and . They are the most commonly used symbols to write Decimal, decimal numbers. They are also used for writing numbers in other systems such as octal, and for writing identifiers ...
, recorded from the 10th century. After the French Revolution (1789–1799), the new French government promoted the extension of the decimal system. Some of those pro-decimal efforts—such as decimal time and the
decimal calendar A decimal calendar is a calendar which includes units of time based on the decimal system. For example a "decimal month" would consist of a year with 10 months and 36.52422 days per month. History Egyptian calendar The ancient Egyptian calenda ...
—were unsuccessful. Other French pro-decimal efforts—currency
decimalisation Decimalisation or decimalization (see spelling differences) is the conversion of a system of currency or of weights and measures to units related by powers of 10. Most countries have decimalised their currencies, converting them from non-decimal ...
and the metrication of weights and measures—spread widely out of France to almost the whole world.


History of positional fractions

J. Lennart Berggren notes that positional decimal fractions were used for the first time by Arab mathematician Abu'l-Hasan al-Uqlidisi as early as the 10th century. The Jewish mathematician Immanuel Bonfils used decimal fractions around 1350, but did not develop any notation to represent them. The Persian mathematician Jamshīd al-Kāshī made the same discovery of decimal fractions in the 15th century. Al Khwarizmi introduced fractions to Islamic countries in the early 9th century; his fraction presentation was similar to the traditional Chinese mathematical fractions from Sunzi Suanjing. Lam Lay Yong, "The Development of Hindu-Arabic and Traditional Chinese Arithmetic", ''Chinese Science'', 1996 p38, Kurt Vogel notation This form of fraction with numerator on top and denominator at bottom without a horizontal bar was also used by 10th century Abu'l-Hasan al-Uqlidisi and 15th century Jamshīd al-Kāshī's work "Arithmetic Key".
The adoption of the decimal representation of numbers less than one, a
fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
, is often credited to
Simon Stevin Simon Stevin (; 1548–1620), sometimes called Stevinus, was a Flemish mathematician, scientist and music theorist. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated vario ...
through his textbook De Thiende; but both Stevin and
E. J. Dijksterhuis Eduard Jan Dijksterhuis (28 October 1892, in Tilburg – 18 May 1965, in De Bilt) was a Dutch historian of science. Career Dijksterhuis studied mathematics at the University of Groningen from 1911 to 1918. His Ph.d. thesis was entitled "A Contrib ...
indicate that Regiomontanus contributed to the European adoption of general
decimal The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
s:
E. J. Dijksterhuis Eduard Jan Dijksterhuis (28 October 1892, in Tilburg – 18 May 1965, in De Bilt) was a Dutch historian of science. Career Dijksterhuis studied mathematics at the University of Groningen from 1911 to 1918. His Ph.d. thesis was entitled "A Contrib ...
(1970) ''Simon Stevin: Science in the Netherlands around 1600'', Martinus Nijhoff Publishers, Dutch original 1943
:European mathematicians, when taking over from the Hindus, ''via'' the Arabs, the idea of positional value for integers, neglected to extend this idea to fractions. For some centuries they confined themselves to using common and sexagesimal fractions... This half-heartedness has never been completely overcome, and sexagesimal fractions still form the basis of our trigonometry, astronomy and measurement of time. ¶ ... Mathematicians sought to avoid fractions by taking the radius ''R'' equal to a number of units of length of the form 10n and then assuming for ''n'' so great an integral value that all occurring quantities could be expressed with sufficient accuracy by integers. ¶ The first to apply this method was the German astronomer Regiomontanus. To the extent that he expressed goniometrical line-segments in a unit ''R''/10n, Regiomontanus may be called an anticipator of the doctrine of decimal positional fractions. In the estimation of Dijksterhuis, "after the publication of De Thiende only a small advance was required to establish the complete system of decimal positional fractions, and this step was taken promptly by a number of writers ... next to Stevin the most important figure in this development was Regiomontanus." Dijksterhuis noted that tevin"gives full credit to Regiomontanus for his prior contribution, saying that the trigonometric tables of the German astronomer actually contain the whole theory of 'numbers of the tenth progress'."


Mathematics


Base of the numeral system

In mathematical numeral systems the radix is usually the number of unique digits, including zero, that a positional numeral system uses to represent numbers. In some cases, such as with a negative base, the radix is the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
r=, b, of the base . For example, for the decimal system the radix (and base) is ten, because it uses the ten digits from 0 through 9. When a number "hits" 9, the next number will not be another different symbol, but a "1" followed by a "0". In binary, the radix is two, since after it hits "1", instead of "2" or another written symbol, it jumps straight to "10", followed by "11" and "100". The highest symbol of a positional numeral system usually has the value one less than the value of the radix of that numeral system. The standard positional numeral systems differ from one another only in the base they use. The radix is an integer that is greater than 1, since a radix of zero would not have any digits, and a radix of 1 would only have the zero digit. Negative bases are rarely used. In a system with more than , b, unique digits, numbers may have many different possible representations. It is important that the radix is finite, from which follows that the number of digits is quite low. Otherwise, the length of a numeral would not necessarily be logarithmic in its size. (In certain non-standard positional numeral systems, including bijective numeration, the definition of the base or the allowed digits deviates from the above.) In standard base-ten (
decimal The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
) positional notation, there are ten decimal digits and the number :5305_ = (5 \times 10^3) + (3 \times 10^2) + (0 \times 10^1) + (5 \times 10^0). In standard base-sixteen (
hexadecimal In mathematics and computing, the hexadecimal (also base-16 or simply hex) numeral system is a positional numeral system that represents numbers using a radix (base) of 16. Unlike the decimal system representing numbers using 10 symbols, hexa ...
), there are the sixteen hexadecimal digits (0–9 and A–F) and the number :14\mathrm9_ = (1 \times 16^3) + (4 \times 16^2) + (\mathrm \times 16^1) + (9 \times 16^0) \qquad (= 5305_) , where B represents the number eleven as a single symbol. In general, in base-''b'', there are ''b'' digits \ =:D and the number :(a_3 a_2 a_1 a_0)_b = (a_3 \times b^3) + (a_2 \times b^2) + (a_1 \times b^1) + (a_0 \times b^0) has \forall k \colon a_k \in D . Note that a_3 a_2 a_1 a_0 represents a sequence of digits, not
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
.


Notation

When describing base in mathematical notation, the letter ''b'' is generally used as a
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
for this concept, so, for a binary system, ''b''
equals Equal(s) may refer to: Mathematics * Equality (mathematics). * Equals sign (=), a mathematical symbol used to indicate equality. Arts and entertainment * ''Equals'' (film), a 2015 American science fiction film * ''Equals'' (game), a board game ...
2. Another common way of expressing the base is writing it as a decimal subscript after the number that is being represented (this notation is used in this article). 11110112 implies that the number 1111011 is a base-2 number, equal to 12310 (a decimal notation representation), 1738 ( octal) and 7B16 (
hexadecimal In mathematics and computing, the hexadecimal (also base-16 or simply hex) numeral system is a positional numeral system that represents numbers using a radix (base) of 16. Unlike the decimal system representing numbers using 10 symbols, hexa ...
). In books and articles, when using initially the written abbreviations of number bases, the base is not subsequently printed: it is assumed that binary 1111011 is the same as 11110112. The base ''b'' may also be indicated by the phrase "base-''b''". So binary numbers are "base-2"; octal numbers are "base-8"; decimal numbers are "base-10"; and so on. To a given radix ''b'' the set of digits is called the standard set of digits. Thus, binary numbers have digits ; decimal numbers have digits and so on. Therefore, the following are notational errors: 522, 22, 1A9. (In all cases, one or more digits is not in the set of allowed digits for the given base.)


Exponentiation

Positional numeral systems work using exponentiation of the base. A digit's value is the digit multiplied by the value of its place. Place values are the number of the base raised to the ''n''th power, where ''n'' is the number of other digits between a given digit and the radix point. If a given digit is on the left hand side of the radix point (i.e. its value is an integer) then ''n'' is positive or zero; if the digit is on the right hand side of the radix point (i.e., its value is fractional) then ''n'' is negative. As an example of usage, the number 465 in its respective base ''b'' (which must be at least base 7 because the highest digit in it is 6) is equal to: :4\times b^2 + 6\times b^1 + 5\times b^0 If the number 465 was in base-10, then it would equal: :4\times 10^2 + 6\times 10^1 + 5\times 10^0 = 4\times 100 + 6\times 10 + 5\times 1 = 465 (46510 = 46510) If however, the number were in base 7, then it would equal: :4\times 7^2 + 6\times 7^1 + 5\times 7^0 = 4\times 49 + 6\times 7 + 5\times 1 = 243 (4657 = 24310) 10''b'' = ''b'' for any base ''b'', since 10''b'' = 1×''b''1 + 0×''b''0. For example, 102 = 2; 103 = 3; 1016 = 1610. Note that the last "16" is indicated to be in base 10. The base makes no difference for one-digit numerals. This concept can be demonstrated using a diagram. One object represents one unit. When the number of objects is equal to or greater than the base ''b'', then a group of objects is created with ''b'' objects. When the number of these groups exceeds ''b'', then a group of these groups of objects is created with ''b'' groups of ''b'' objects; and so on. Thus the same number in different bases will have different values: 241 in base 5: 2 groups of 52 (25) 4 groups of 5 1 group of 1 ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo + + o ooooo ooooo ooooo ooooo ooooo ooooo 241 in base 8: 2 groups of 82 (64) 4 groups of 8 1 group of 1 oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo + + o oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo The notation can be further augmented by allowing a leading minus sign. This allows the representation of negative numbers. For a given base, every representation corresponds to exactly one real number and every real number has at least one representation. The representations of rational numbers are those representations that are finite, use the bar notation, or end with an infinitely repeating cycle of digits.


Digits and numerals

A ''digit'' is a symbol that is used for positional notation, and a ''numeral'' consists of one or more digits used for representing a number with positional notation. Today's most common digits are the decimal digits "0", "1", "2", "3", "4", "5", "6", "7", "8", and "9". The distinction between a digit and a numeral is most pronounced in the context of a number base. A non-zero ''numeral'' with more than one digit position will mean a different number in a different number base, but in general, the ''digits'' will mean the same. For example, the base-8 numeral 238 contains two digits, "2" and "3", and with a base number (subscripted) "8". When converted to base-10, the 238 is equivalent to 1910, i.e. 238 = 1910. In our notation here, the subscript "8" of the numeral 238 is part of the numeral, but this may not always be the case. Imagine the numeral "23" as having an ambiguous base number. Then "23" could likely be any base, from base-4 up. In base-4, the "23" means 1110, i.e. 234 = 1110. In base-60, the "23" means the number 12310, i.e. 2360 = 12310. The numeral "23" then, in this case, corresponds to the set of base-10 numbers while its digits "2" and "3" always retain their original meaning: the "2" means "two of", and the "3" means "three of". In certain applications when a numeral with a fixed number of positions needs to represent a greater number, a higher number-base with more digits per position can be used. A three-digit, decimal numeral can represent only up to 999. But if the number-base is increased to 11, say, by adding the digit "A", then the same three positions, maximized to "AAA", can represent a number as great as 1330. We could increase the number base again and assign "B" to 11, and so on (but there is also a possible encryption between number and digit in the number-digit-numeral hierarchy). A three-digit numeral "ZZZ" in base-60 could mean . If we use the entire collection of our alphanumerics we could ultimately serve a base-''62'' numeral system, but we remove two digits, uppercase "I" and uppercase "O", to reduce confusion with digits "1" and "0". We are left with a base-60, or sexagesimal numeral system utilizing 60 of the 62 standard alphanumerics. (But see '' Sexagesimal system'' below.) In general, the number of possible values that can be represented by a d digit number in base r is r^d. The common numeral systems in computer science are binary (radix 2), octal (radix 8), and hexadecimal (radix 16). In binary only digits "0" and "1" are in the numerals. In the octal numerals, are the eight digits 0–7.
Hex Hex or HEX may refer to: Magic * Hex, a curse or supposed real and potentially supernaturally realized malicious wish * Hex sign, a barn decoration originating in Pennsylvania Dutch regions of the United States * Hex work, a Pennsylvania Dutch ...
is 0–9 A–F, where the ten numerics retain their usual meaning, and the alphabetics correspond to values 10–15, for a total of sixteen digits. The numeral "10" is binary numeral "2", octal numeral "8", or hexadecimal numeral "16".


Radix point

The notation can be extended into the negative exponents of the base ''b''. Thereby the so-called radix point, mostly ».«, is used as separator of the positions with non-negative from those with negative exponent. Numbers that are not integers use places beyond the radix point. For every position behind this point (and thus after the units digit), the exponent ''n'' of the power ''b''''n'' decreases by 1 and the power approaches 0. For example, the number 2.35 is equal to: :2\times 10^0 + 3\times 10^ + 5\times 10^


Sign

If the base and all the digits in the set of digits are non-negative, negative numbers cannot be expressed. To overcome this, a minus sign, here »-«, is added to the numeral system. In the usual notation it is prepended to the string of digits representing the otherwise non-negative number.


Base conversion

The conversion to a base b_2 of an integer represented in base b_1 can be done by a succession of Euclidean divisions by b_2: the right-most digit in base b_2 is the remainder of the division of by b_2; the second right-most digit is the remainder of the division of the quotient by b_2, and so on. The left-most digit is the last quotient. In general, the th digit from the right is the remainder of the division by b_2 of the th quotient. For example: converting A10BHex to decimal (41227): 0xA10B/10 = 0x101A R: 7 (ones place) 0x101A/10 = 0x19C R: 2 (tens place) 0x19C/10 = 0x29 R: 2 (hundreds place) 0x29/10 = 0x4 R: 1 ... 4 When converting to a larger base (such as from binary to decimal), the remainder represents b_2 as a single digit, using digits from b_1. For example: converting 0b11111001 (binary) to 249 (decimal): 0b11111001/10 = 0b11000 R: 0b1001 (0b1001 = "9" for ones place) 0b11000/10 = 0b10 R: 0b100 (0b100 = "4" for tens) 0b10/10 = 0b0 R: 0b10 (0b10 = "2" for hundreds) For the fractional part, conversion can be done by taking digits after the radix point (the numerator), and dividing it by the implied denominator in the target radix. Approximation may be needed due to a possibility of non-terminating digits if the reduced fraction's denominator has a prime factor other than any of the base's prime factor(s) to convert to. For example, 0.1 in decimal (1/10) is 0b1/0b1010 in binary, by dividing this in that radix, the result is 0b0.00011 (because one of the prime factors of 10 is 5). For more general fractions and bases see the algorithm for positive bases. In practice, Horner's method is more efficient than the repeated division required above. A number in positional notation can be thought of as a polynomial, where each digit is a coefficient. Coefficients can be larger than one digit, so an efficient way to convert bases is to convert each digit, then evaluate the polynomial via Horner's method within the target base. Converting each digit is a simple
lookup table In computer science, a lookup table (LUT) is an array that replaces runtime computation with a simpler array indexing operation. The process is termed as "direct addressing" and LUTs differ from hash tables in a way that, to retrieve a value v wi ...
, removing the need for expensive division or modulus operations; and multiplication by x becomes right-shifting. However, other polynomial evaluation algorithms would work as well, like
repeated squaring A rerun or repeat is a rebroadcast of an episode of a radio or television Broadcast programming, program. There are two types of reruns – those that occur during a Hiatus (television), hiatus, and those that occur when a program is Broadcast sy ...
for single or sparse digits. Example: Convert 0xA10B to 41227 A10B = (10*16^3) + (1*16^2) + (0*16^1) + (11*16^0) Lookup table: 0x0 = 0 0x1 = 1 ... 0x9 = 9 0xA = 10 0xB = 11 0xC = 12 0xD = 13 0xE = 14 0xF = 15 Therefore 0xA10B's decimal digits are 10, 1, 0, and 11. Lay out the digits out like this. The most significant digit (10) is "dropped": 10 1 0 11 <- Digits of 0xA10B --------------- 10 Then we multiply the bottom number from the source base (16), the product is placed under the next digit of the source value, and then add: 10 1 0 11 160 --------------- 10 161 Repeat until the final addition is performed: 10 1 0 11 160 2576 41216 --------------- 10 161 2576 41227 and that is 41227 in decimal. Convert 0b11111001 to 249 Lookup table: 0b0 = 0 0b1 = 1 Result: 1 1 1 1 1 0 0 1 <- Digits of 0b11111001 2 6 14 30 62 124 248 ------------------------- 1 3 7 15 31 62 124 249


Terminating fractions

The numbers which have a finite representation form the semiring :\frac := \left\ . More explicitly, if p_1^ \cdot \ldots \cdot p_n^ := b is a factorization of b into the primes p_1, \ldots ,p_n \in \mathbb P with exponents then with the non-empty set of denominators S := \ we have : \Z_S := \left\ = b^ \, \Z = ^\Z where \langle S\rangle is the group generated by the p\in S and ^\Z is the so-called localization of \Z with respect to The denominator of an element of \Z_S contains if reduced to lowest terms only prime factors out of S. This ring of all terminating fractions to base b is dense in the field of rational numbers \Q. Its completion for the usual (Archimedean) metric is the same as for \Q, namely the real numbers \R. So, if S = \ then \Z_ has not to be confused with \Z_ , the discrete valuation ring for the prime p, which is equal to \Z_ with T = \mathbb P \setminus \ . If b divides c, we have b^ \, \Z \subseteq c^ \, \Z.


Infinite representations


Rational numbers

The representation of non-integers can be extended to allow an infinite string of digits beyond the point. For example, 1.12112111211112 ... base-3 represents the sum of the infinite series: :\begin 1\times 3^ + \\ 1\times 3^ + 2\times 3^ + \\ 1\times 3^ + 1\times 3^ + 2\times 3^ + \\ 1\times 3^ + 1\times 3^ + 1\times 3^ + 2\times 3^ + \\ 1\times 3^ + 1\times 3^ + 1\times 3^ + 1\times 3^ + 2\times 3^ + \cdots \end Since a complete infinite string of digits cannot be explicitly written, the trailing ellipsis (...) designates the omitted digits, which may or may not follow a pattern of some kind. One common pattern is when a finite sequence of digits repeats infinitely. This is designated by drawing a vinculum across the repeating block: :2.42\overline_5 = 2.42314314314314314\dots_5 This is the repeating decimal notation (to which there does not exist a single universally accepted notation or phrasing). For base 10 it is called a repeating decimal or recurring decimal. An irrational number has an infinite non-repeating representation in all integer bases. Whether a rational number has a finite representation or requires an infinite repeating representation depends on the base. For example, one third can be represented by: :0.1_3 :0.\overline3_ = 0.3333333\dots_ ::or, with the base implied: ::0.\overline3 = 0.3333333\dots (see also 0.999...) :0.\overline_2 = 0.010101\dots_2 :0.2_6 For integers ''p'' and ''q'' with ''gcd'' (''p'', ''q'') = 1, the
fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
''p''/''q'' has a finite representation in base ''b'' if and only if each
prime factor A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
of ''q'' is also a prime factor of ''b''. For a given base, any number that can be represented by a finite number of digits (without using the bar notation) will have multiple representations, including one or two infinite representations: :1. A finite or infinite number of zeroes can be appended: ::3.46_7 = 3.460_7 = 3.460000_7 = 3.46\overline0_7 :2. The last non-zero digit can be reduced by one and an infinite string of digits, each corresponding to one less than the base, are appended (or replace any following zero digits): ::3.46_7 = 3.45\overline6_7 ::1_ = 0.\overline9_\qquad (see also 0.999...) ::220_5 = 214.\overline4_5


Irrational numbers

A (real) irrational number has an infinite non-repeating representation in all integer bases. Examples are the non-solvable ''n''th roots :y = \sqrt with y^n = x and , numbers which are called algebraic, or numbers like :\pi,e which are
transcendental Transcendence, transcendent, or transcendental may refer to: Mathematics * Transcendental number, a number that is not the root of any polynomial with rational coefficients * Algebraic element or transcendental element, an element of a field exten ...
. The number of transcendentals is uncountable and the sole way to write them down with a finite number of symbols is to give them a symbol or a finite sequence of symbols.


Applications


Decimal system

In the
decimal The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
(base-10) Hindu–Arabic numeral system, each position starting from the right is a higher power of 10. The first position represents 100 (1), the second position 101 (10), the third position 102 ( or 100), the fourth position 103 ( or 1000), and so on.
Fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
al values are indicated by a
separator Separator can refer to: * A mechanical device to separate fluids and solids, like ** Cream separator, separates cream from milk ** Demister (vapor), removal of liquid droplets entrained in a vapor stream ** Separator (oil production), of an oil pr ...
, which can vary in different locations. Usually this separator is a period or
full stop The full stop (Commonwealth English), period (North American English), or full point , is a punctuation mark. It is used for several purposes, most often to mark the end of a declarative sentence (as distinguished from a question or exclamation ...
, or a
comma The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline ...
. Digits to the right of it are multiplied by 10 raised to a negative power or exponent. The first position to the right of the separator indicates 10−1 (0.1), the second position 10−2 (0.01), and so on for each successive position. As an example, the number 2674 in a base-10 numeral system is: :(2 × 103) + (6 × 102) + (7 × 101) + (4 × 100) or :(2 × 1000) + (6 × 100) + (7 × 10) + (4 × 1).


Sexagesimal system

The sexagesimal or base-60 system was used for the integral and fractional portions of Babylonian numerals and other Mesopotamian systems, by
Hellenistic In Classical antiquity, the Hellenistic period covers the time in Mediterranean history after Classical Greece, between the death of Alexander the Great in 323 BC and the emergence of the Roman Empire, as signified by the Battle of Actium in ...
astronomers using Greek numerals for the fractional portion only, and is still used for modern time and angles, but only for minutes and seconds. However, not all of these uses were positional. Modern time separates each position by a colon or a prime symbol. For example, the time might be 10:25:59 (10 hours 25 minutes 59 seconds). Angles use similar notation. For example, an angle might be (10
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathematics ...
s 25
minute The minute is a unit of time usually equal to (the first sexagesimal fraction) of an hour, or 60 seconds. In the UTC time standard, a minute on rare occasions has 61 seconds, a consequence of leap seconds (there is a provision to insert a nega ...
s 59
second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ...
s). In both cases, only minutes and seconds use sexagesimal notation—angular degrees can be larger than 59 (one rotation around a circle is 360°, two rotations are 720°, etc.), and both time and angles use decimal fractions of a second. This contrasts with the numbers used by Hellenistic and Renaissance astronomers, who used
third Third or 3rd may refer to: Numbers * 3rd, the ordinal form of the cardinal number 3 * , a fraction of one third * Second#Sexagesimal divisions of calendar time and day, 1⁄60 of a ''second'', or 1⁄3600 of a ''minute'' Places * 3rd Street (d ...
s, fourths, etc. for finer increments. Where we might write , they would have written or 10°2559233112. Using a digit set of digits with upper and lowercase letters allows short notation for sexagesimal numbers, e.g. 10:25:59 becomes 'ARz' (by omitting I and O, but not i and o), which is useful for use in URLs, etc., but it is not very intelligible to humans. In the 1930s, Otto Neugebauer introduced a modern notational system for Babylonian and Hellenistic numbers that substitutes modern decimal notation from 0 to 59 in each position, while using a semicolon (;) to separate the integral and fractional portions of the number and using a comma (,) to separate the positions within each portion. For example, the mean synodic month used by both Babylonian and Hellenistic astronomers and still used in the Hebrew calendar is 29;31,50,8,20 days, and the angle used in the example above would be written 10;25,59,23,31,12 degrees.


Computing

In computing, the binary (base-2), octal (base-8) and
hexadecimal In mathematics and computing, the hexadecimal (also base-16 or simply hex) numeral system is a positional numeral system that represents numbers using a radix (base) of 16. Unlike the decimal system representing numbers using 10 symbols, hexa ...
(base-16) bases are most commonly used. Computers, at the most basic level, deal only with sequences of conventional zeroes and ones, thus it is easier in this sense to deal with powers of two. The hexadecimal system is used as "shorthand" for binary—every 4 binary digits (bits) relate to one and only one hexadecimal digit. In hexadecimal, the six digits after 9 are denoted by A, B, C, D, E, and F (and sometimes a, b, c, d, e, and f). The octal numbering system is also used as another way to represent binary numbers. In this case the base is 8 and therefore only digits 0, 1, 2, 3, 4, 5, 6, and 7 are used. When converting from binary to octal every 3 bits relate to one and only one octal digit. Hexadecimal, decimal, octal, and a wide variety of other bases have been used for binary-to-text encoding, implementations of arbitrary-precision arithmetic, and other applications. ''For a list of bases and their applications, see list of numeral systems.''


Other bases in human language

Base-12 systems (
duodecimal The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead wri ...
or dozenal) have been popular because multiplication and division are easier than in base-10, with addition and subtraction being just as easy. Twelve is a useful base because it has many factors. It is the smallest common multiple of one, two, three, four and six. There is still a special word for "dozen" in English, and by analogy with the word for 102, ''hundred'', commerce developed a word for 122, ''gross''. The standard 12-hour clock and common use of 12 in English units emphasize the utility of the base. In addition, prior to its conversion to decimal, the old British currency
Pound Sterling Sterling (abbreviation: stg; Other spelling styles, such as STG and Stg, are also seen. ISO code: GBP) is the currency of the United Kingdom and nine of its associated territories. The pound ( sign: £) is the main unit of sterling, and t ...
(GBP) ''partially'' used base-12; there were 12 pence (d) in a shilling (s), 20 shillings in a pound (£), and therefore 240 pence in a pound. Hence the term LSD or, more properly, £sd. The Maya civilization and other civilizations of pre-Columbian Mesoamerica used base-20 (
vigesimal vigesimal () or base-20 (base-score) numeral system is based on twenty (in the same way in which the decimal numeral system is based on ten). '' Vigesimal'' is derived from the Latin adjective '' vicesimus'', meaning 'twentieth'. Places In ...
), as did several North American tribes (two being in southern California). Evidence of base-20 counting systems is also found in the languages of central and western Africa. Remnants of a Gaulish base-20 system also exist in French, as seen today in the names of the numbers from 60 through 99. For example, sixty-five is ''soixante-cinq'' (literally, "sixty ndfive"), while seventy-five is ''soixante-quinze'' (literally, "sixty ndfifteen"). Furthermore, for any number between 80 and 99, the "tens-column" number is expressed as a multiple of twenty. For example, eighty-two is ''quatre-vingt-deux'' (literally, four twenty ndtwo), while ninety-two is ''quatre-vingt-douze'' (literally, four twenty ndtwelve). In Old French, forty was expressed as two twenties and sixty was three twenties, so that fifty-three was expressed as two twenties ndthirteen, and so on. In English the same base-20 counting appears in the use of " scores". Although mostly historical, it is occasionally used colloquially. Verse 10 of Psalm 90 in the King James Version of the Bible starts: "The days of our years are threescore years and ten; and if by reason of strength they be fourscore years, yet is their strength labour and sorrow". The Gettysburg Address starts: "Four score and seven years ago". The
Irish language Irish ( Standard Irish: ), also known as Gaelic, is a Goidelic language of the Insular Celtic branch of the Celtic language family, which is a part of the Indo-European language family. Irish is indigenous to the island of Ireland and was ...
also used base-20 in the past, twenty being ''fichid'', forty ''dhá fhichid'', sixty ''trí fhichid'' and eighty ''ceithre fhichid''. A remnant of this system may be seen in the modern word for 40, ''daoichead''. The Welsh language continues to use a base-20
counting system In linguistics, a numeral (or number word) in the broadest sense is a word or phrase that describes a numerical quantity. Some theories of grammar use the word "numeral" to refer to cardinal numbers that act as a determiner that specify the quant ...
, particularly for the age of people, dates and in common phrases. 15 is also important, with 16–19 being "one on 15", "two on 15" etc. 18 is normally "two nines". A decimal system is commonly used. The Inuit languages use a base-20 counting system. Students from
Kaktovik, Alaska Kaktovik (; ik, Qaaktuġvik, ) is a City (Alaska), city in North Slope Borough, Alaska, North Slope Borough, Alaska, United States. The population was 283 at the 2020 United States census, 2020 census. History Until the late nineteenth century ...
invented a base-20 numeral system in 1994 Danish numerals display a similar base-20 structure. The
Māori language Māori (), or ('the Māori language'), also known as ('the language'), is an Eastern Polynesian language spoken by the Māori people, the indigenous population of mainland New Zealand. Closely related to Cook Islands Māori, Tuamotuan, and ...
of New Zealand also has evidence of an underlying base-20 system as seen in the terms ''Te Hokowhitu a Tu'' referring to a war party (literally "the seven 20s of Tu") and ''Tama-hokotahi'', referring to a great warrior ("the one man equal to 20"). The binary system was used in the Egyptian Old Kingdom, 3000 BC to 2050 BC. It was cursive by rounding off rational numbers smaller than 1 to , with a 1/64 term thrown away (the system was called the
Eye of Horus The Eye of Horus, ''wedjat'' eye or ''udjat'' eye is a concept and symbol in ancient Egyptian religion that represents well-being, healing, and protection. It derives from the mythical conflict between the god Horus with his rival Set, in wh ...
). A number of
Australian Aboriginal languages The Indigenous languages of Australia number in the hundreds, the precise number being quite uncertain, although there is a range of estimates from a minimum of around 250 (using the technical definition of 'language' as non-mutually intellig ...
employ binary or binary-like counting systems. For example, in
Kala Lagaw Ya ''Kalau Lagau Ya'', ''Kalaw Lagaw Ya'', ''Kala Lagaw Ya'' (), or the ''Western Torres Strait language'' (also several other names, see below), is the language indigenous to the central and western Torres Strait Islands, Queensland, Australia. O ...
, the numbers one through six are ''urapon'', ''ukasar'', ''ukasar-urapon'', ''ukasar-ukasar'', ''ukasar-ukasar-urapon'', ''ukasar-ukasar-ukasar''. North and Central American natives used base-4 (
quaternary The Quaternary ( ) is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). It follows the Neogene Period and spans from 2.58 million years ...
) to represent the four cardinal directions. Mesoamericans tended to add a second base-5 system to create a modified base-20 system. A base-5 system ( quinary) has been used in many cultures for counting. Plainly it is based on the number of digits on a human hand. It may also be regarded as a sub-base of other bases, such as base-10, base-20, and base-60. A base-8 system ( octal) was devised by the Yuki tribe of Northern California, who used the spaces between the fingers to count, corresponding to the digits one through eight. There is also linguistic evidence which suggests that the Bronze Age Proto-Indo Europeans (from whom most European and Indic languages descend) might have replaced a base-8 system (or a system which could only count up to 8) with a base-10 system. The evidence is that the word for 9, ''newm'', is suggested by some to derive from the word for "new", ''newo-'', suggesting that the number 9 had been recently invented and called the "new number". Many ancient counting systems use five as a primary base, almost surely coming from the number of fingers on a person's hand. Often these systems are supplemented with a secondary base, sometimes ten, sometimes twenty. In some African languages the word for five is the same as "hand" or "fist" ( Dyola language of Guinea-Bissau, Banda language of Central Africa). Counting continues by adding 1, 2, 3, or 4 to combinations of 5, until the secondary base is reached. In the case of twenty, this word often means "man complete". This system is referred to as ''quinquavigesimal''. It is found in many languages of the
Sudan Sudan ( or ; ar, السودان, as-Sūdān, officially the Republic of the Sudan ( ar, جمهورية السودان, link=no, Jumhūriyyat as-Sūdān), is a country in Northeast Africa. It shares borders with the Central African Republic t ...
region. The Telefol language, spoken in Papua New Guinea, is notable for possessing a base-27 numeral system.


Non-standard positional numeral systems

Interesting properties exist when the base is not fixed or positive and when the digit symbol sets denote negative values. There are many more variations. These systems are of practical and theoretic value to computer scientists. Balanced ternary uses a base of 3 but the digit set is instead of . The "" has an equivalent value of −1. The negation of a number is easily formed by switching the on the 1s. This system can be used to solve the
balance problem Balance or balancing may refer to: Common meanings * Balance (ability) in biomechanics * Balance (accounting) * Balance or weighing scale * Equality (mathematics), Balance as in equality or equilibrium Arts and entertainment Film * Balance (1983 ...
, which requires finding a minimal set of known counter-weights to determine an unknown weight. Weights of 1, 3, 9, ... 3''n'' known units can be used to determine any unknown weight up to 1 + 3 + ... + 3''n'' units. A weight can be used on either side of the balance or not at all. Weights used on the balance pan with the unknown weight are designated with , with 1 if used on the empty pan, and with 0 if not used. If an unknown weight ''W'' is balanced with 3 (31) on its pan and 1 and 27 (30 and 33) on the other, then its weight in decimal is 25 or 101 in balanced base-3. : The factorial number system uses a varying radix, giving
factorial In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \t ...
s as place values; they are related to
Chinese remainder theorem In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
and residue number system enumerations. This system effectively enumerates permutations. A derivative of this uses the Towers of Hanoi puzzle configuration as a counting system. The configuration of the towers can be put into 1-to-1 correspondence with the decimal count of the step at which the configuration occurs and vice versa.


Non-positional positions

Each position does not need to be positional itself. Babylonian sexagesimal numerals were positional, but in each position were groups of two kinds of wedges representing ones and tens (a narrow vertical wedge , for the one and an open left pointing wedge ⟨ for the ten) — up to 5+9=14 symbols per position (i.e. 5 tens ⟨⟨⟨⟨⟨ and 9 ones , , , , , , , , , grouped into one or two near squares containing up to three tiers of symbols, or a place holder (\\) for the lack of a position). Hellenistic astronomers used one or two alphabetic Greek numerals for each position (one chosen from 5 letters representing 10–50 and/or one chosen from 9 letters representing 1–9, or a zero symbol).Ifrah, pages 261–264


See also

Examples: * List of numeral systems * : Positional numeral systems Related topics: * Algorism * Hindu–Arabic numeral system * Mixed radix * Non-standard positional numeral systems * Numeral system * Scientific notation Other: * Significant figures


Notes


References

* * * * *


External links


Accurate Base ConversionThe Development of Hindu Arabic and Traditional Chinese ArithmeticsImplementation of Base Conversion
at
cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...

Learn to count other bases on your fingersOnline Arbitrary Precision Base Converter
{{DEFAULTSORT:Positional Notation Mathematical notation Articles containing proofs