A plasma torch (also known as a plasma arc, plasma gun, plasma cutter, or plasmatron) is a device for generating a directed flow of
plasma
Plasma or plasm may refer to:
Science
* Plasma (physics), one of the four fundamental states of matter
* Plasma (mineral), a green translucent silica mineral
* Quark–gluon plasma, a state of matter in quantum chromodynamics
Biology
* Blood pla ...
.
The plasma jet can be used for applications including
plasma cutting
Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other con ...
,
plasma arc welding
Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode (which is usually but not always made of sintered tungsten) and the workpiece. The key difference from ...
,
plasma spraying
Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The "feedstock" (coating precursor) is heated by electrical (plasma or arc) or chemical means (combustion flame).
Thermal sprayi ...
, and
plasma gasification
Plasma gasification is an extreme thermal process using plasma which converts organic matter into a syngas (synthesis gas) which is primarily made up of hydrogen and carbon monoxide. A plasma torch powered by an electric arc is used to ionize ...
for waste disposal.
Types
Thermal plasmas are generated in plasma torches by
direct current
Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even ...
(DC),
alternating current
Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
(AC),
radio-frequency
Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the upp ...
(RF) and other discharges. DC torches are the most commonly used and researched, because when compared to AC: "there is less flicker generation and noise, a more stable operation, better control, a minimum of two electrodes, lower electrode consumption, slightly lower refractory
eatwear and lower power consumption".
Transferred vs. non-transferred
There are two types of DC torches: non-transferred and transferred. In non-transferred DC torches, the electrodes are inside the body/housing of the torch itself (creating the arc there). Whereas in a transferred torch one electrode is outside (and is usually the conductive material to be treated), allowing the arc to form outside of the torch over a larger distance.
A benefit of transferred DC torches is that the plasma arc is formed outside the water-cooled body, preventing heat loss—as is the case with non-transferred torches, where their electrical-to-thermal efficiency can be as low as 50%, but the hot water can itself be utilized.
Furthermore, transferred DC torches can be used in a twin-torch setup, where one torch is
cathodic and the other anodic, which has the earlier benefit of a regular transferred single-torch system, but allows their use with
non-conductive materials, as there is no need for it to form the other electrode.
However, these types of setups are rare as most common non-conductive materials do not require the precise cutting ability of a plasma torch. In addition, the discharge generated by this particular plasma source configuration is characterized by a complex shape and fluid dynamics that requires a 3D description in order to be predicted, making performance unsteady. The electrodes of non-transferred torches are larger, because they suffer more wear by the plasma arc.
The quality of plasma produced is a function of density (pressure), temperature and torch power (the greater the better). With regards to the efficiency of the torch itself—this can vary among manufacturers and torch technology; though for example, Leal-Quirós reports that for Westinghouse Plasma Corp. torches “a thermal efficiency of 90% is easily possible; the efficiency represents the percentage of arc power that exits the torch and enters the process”.
Thermal plasma DC torches, non-transferred arc, hot cathode
In a DC torch, the
electric arc
An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The electric current, current through a normally Electrical conductance, nonconductive medium such as air produces a plasma (p ...
is formed between the
electrodes
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials de ...
(which can be made of copper,
tungsten
Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isolat ...
,
graphite
Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large ...
, silver etc.), and the thermal plasma is formed from the continual input of carrier/working gas, projecting outward as a plasma jet/flame (as can be seen in the adjacent image). In DC torches, the carrier gas can be, for example, either oxygen, nitrogen, argon, helium, air, or hydrogen;
and although termed such, it does not have to be a gas (thus, better termed a carrier fluid).
For example, a research plasma torch at the Institute of Plasma Physics (IPP) in Prague, Czech Republic, functions with an
H2O vortex (as well as a small addition of argon to ignite the arc), and produces a high temperature/velocity plasma flame.
In fact, early studies of arc stabilization employed a water-vortex.
Overall, the electrode materials and carrier fluids have to be specifically matched to avoid excessive electrode corrosion or oxidation (and contamination of materials to be treated), while maintaining ample power and function.
Furthermore, the flow-rate of the carrier gas can be raised to promote a larger, more projecting plasma jet, provided that the arc current is sufficiently increased; and vice versa.
The plasma flame of a real plasma torch is a few inches long at most; it is to be distinguished from
fictional long-range plasma weapons.
Gallery
File:TorchCuttingCloseup.jpg, Close up of a Hypertherm HyPerformance plasma torch cutting metal
File:STEP-NC plasma cutting.jpg, Prototype STEP-NC
STEP-NC is a machine tool control language that extends the ISO 10303 STEP standards with the machining model in ISO 14649, adding geometric dimension and tolerance data for inspection, and the STEP PDM model for integration into the wider ent ...
system driving plasma torch with ESAB
ESAB, ''Elektriska Svetsnings-Aktiebolaget'' ( en, Electric Welding Limited company), is an American Swedish industrial company.
The ultimate parent company of ESAB is ESAB Corporation, a New York Stock Exchange listed (TickerESAB with its princ ...
CNC
Numerical control (also computer numerical control, and commonly called CNC) is the automated control of machining tools (such as drills, lathes, mills, grinders, routers and 3D printers) by means of a computer. A CNC machine processes a p ...
to cut and bevel half-inch steel plate. Laser marking of the front and back of the plate was also done in earlier operations.
File:ICP-SFMS Torch 1.JPG, Sector field ICP-MS
Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is ...
torch
File:ICP-SFMS Torch 2.JPG, Sector field ICP-MS
Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is ...
torch
See also
*
Plasma (physics)
Plasma () 1, where \nu_ is the electron gyrofrequency and \nu_ is the electron collision rate. It is often the case that the electrons are magnetized while the ions are not. Magnetized plasmas are ''anisotropic'', meaning that their properties ...
*
List of plasma (physics) applications articles
This is a list of plasma physics topics.
A
* Ablation
* Abradable coating
* Abraham–Lorentz force
* Absorption band
* Accretion disk
* Active galactic nucleus
* Adiabatic invariant
* ADITYA (tokamak)
* Aeronomy
* Afterglow plasma
* A ...
*
References
{{Reflist
Plasma physics
Plasma processing
Sustainable technologies