Phototrophic Biofilms
   HOME

TheInfoList



OR:

Phototrophic biofilms are microbial communities generally comprising both phototrophic microorganisms, which use light as their energy source, and chemoheterotrophs. Thick laminated multilayered phototrophic biofilms are usually referred to as
microbial mat A microbial mat is a multi-layered sheet of microorganisms, mainly bacteria and archaea, or bacteria alone. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts ...
s or phototrophic mats (see also
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular ...
). These organisms, which can be prokaryotic or eukaryotic organisms like
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
, cyanobacteria,
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
, and microalgae, make up diverse microbial communities that are affixed in a mucous matrix, or film. These biofilms occur on contact surfaces in a range of terrestrial and aquatic environments. The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment. In addition to these natural roles, phototrophic biofilms have also been adapted for applications such as crop production and protection,
bioremediation Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi, and plants), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluent ...
, and wastewater treatment.


Biofilm formation

Biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular ...
formation is a complicated process which occurs in four general steps: attachment of cells, formation of the colony, maturation, and cell dispersal. These films can grow in sizes ranging from microns to centimeters in thickness. Most are green and/or brown, but can be more colorful. Biofilm development is dependent on the generation of extracellular polymeric substances (EPS) by microorganisms. The EPS, which is akin to a gel, is a matrix which provides structure for the biofilm and is essential for growth and functionality. It consists of organic compounds such as polysaccharides, proteins, and glycolipids and may also include inorganic substances like silt and silica. EPS join cells together in the biofilm and transmits light to organisms in the lower zone. Additionally, EPS serves as an adhesive for surface attachment and facilitates digestion of nutrients by extracellular enzymes. Microbial functions and interactions are also important for maintaining the well-being of the community. In general, phototrophic organisms in the biofilm provide a foundation for the growth of the community as a whole by mediating biofilm processes and conversions. The chemoheterotrophs use the photosynthetic waste products from the phototrophs as their carbon and nitrogen sources, and in turn perform nutrient regeneration for the community. Various groups of organisms are located in distinct layers based on availability of light, the presence of oxygen, and
redox gradient A redox gradient is a series of reduction-oxidation (redox) reactions sorted according to redox potential. The redox ladder displays the order in which redox reactions occur based on the free energy gained from redox pairs. These redox gradients ...
s produced by the species. Light exposure early in biofilm development has an immense impact on growth and microbial diversity; greater light availability promotes more growth. Phototrophs such as cyanobacteria and green algae occupy the exposed layer of the biofilm while lower layers consist of anaerobic phototrophs and heterotrophs like bacteria, protozoa, and fungi. Eukaryotic algae and cyanobacteria in the outer portion use light energy to reduce carbon dioxide, providing organic substrates and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
. This photosynthetic activity fuels processes and conversions in the total biofilm community, including the
heterotrophic A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
fraction. It also produces an oxygen gradient in the mat which inhibits most anaerobic phototrophs and chemotrophs from growing in the upper regions. Communication between the microorganisms is facilitated by
quorum sensing In biology, quorum sensing or quorum signalling (QS) is the ability to detect and respond to cell population density by gene regulation. As one example, QS enables bacteria to restrict the expression of specific genes to the high cell densities at ...
or signal transduction pathways, which are accomplished through the secretion of molecules which diffuse through the biofilm. The identity of these substances varies depending on the type of microorganism from which it was secreted. While some of the organisms contributing to the formation of the biofilms can be identified, exact composition of the biofilms is difficult to determine because many of the organisms cannot be grown using pure culture methods. Though pure culture methods cannot be used to identify unculturable microorganisms and do not support the study of the complex interactions between photoautotrophs and heterotrophs, the use of
metagenomics Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microb ...
, proteomics, and
transcriptomics Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. H ...
has helped characterize these unculturable organisms and has provided some insight into molecular mechanisms, microbial organization, and interactions in biofilms.


Ecology

Phototrophic biofilms can be found on terrestrial and aquatic surfaces and can withstand environmental fluctuations and extreme environments. In aquatic systems, biofilms are prevalent on surfaces of rocks and plants, and in terrestrial environments they can be located in the soil, on rocks, and on buildings. Phototrophic biofilms and microbial mats have been described in extreme environments like thermal springs, hyper saline ponds, desert soil crusts, and in lake ice covers in Antarctica. The 3.4-billion-year fossil record of benthic phototrophic communities, such as microbial mats and
stromatolite Stromatolites () or stromatoliths () are layered sedimentary formations ( microbialite) that are created mainly by photosynthetic microorganisms such as cyanobacteria, sulfate-reducing bacteria, and Pseudomonadota (formerly proteobacteria). T ...
s, indicates that these associations represent the Earth's oldest known ecosystems. It is thought that these early ecosystems played a key role in the build-up of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
in the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing fo ...
. A diverse array of roles is played by these microorganisms across the range of environments in which they can be found. In aquatic environments, these microbes are primary producers, a critical part of the food chain. They perform a key function in exchanging a substantial amount of nutrients and gases between the atmospheric and oceanic reservoirs. Biofilms in terrestrial systems can contribute to improving soil, reducing erosion, promoting growth of vegetation, and revitalizing desert-like land, but they can also accelerate the degradation of solid structures like buildings and monuments.


Applications

There is a growing interest in the application of phototrophic biofilms, for instance in wastewater treatment in
constructed wetland A constructed wetland is an artificial wetland to treat sewage, greywater, stormwater runoff or industrial wastewater. It may also be designed for land reclamation after mining, or as a mitigation step for natural areas lost to land development ...
s,
bioremediation Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi, and plants), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluent ...
,
agriculture Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people t ...
, and
biohydrogen Biohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass. Many challenges characterize this technology, including those intrinsic to ...
production. A few are outlined below.


Agriculture

Agrochemicals such as pesticides,
fertilizer A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
s, and food hormones are widely used to produce greater quality and quantity of food as well as provide crop protection. However,
biofertilizer A biofertilizer is a substance which contains living micro-organisms which, when applied to seeds, plant surfaces, or soil, colonize the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of prim ...
s have been developed as a more environmentally cognizant method of assisting in plant development and protection by promoting the growth of microorganisms such as cyanobacteria. Cyanobacteria can augment plant growth by colonizing on plant roots to supply carbon and nitrogen, which they can provide to plants through the natural metabolic processes of carbon dioxide and nitrogen fixation. They can also produce substances which induce plant defense against harmful fungi, bacteria, and viruses. Other organisms can also produce secondary metabolites such as phytohormones which increase plants' resistance to pests and disease. Promoting growth of phototrophic biofilms in agricultural settings improves the quality of the soil and water retention, reduces salinity, and protects against
erosion Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited. Erosion is dis ...
.


Bioremediation

Organisms in mats such as cyanobacteria, sulfate reducers, and aerobic heterotrophs can aid in bioremediation of water systems through biodegradation of oils. This is achieved by freeing oxygen, organic compounds, and nitrogen from hydrocarbon pollutants. Biofilm growth can also degrade other pollutants by oxidizing oils, pesticides, and herbicides and reducing heavy metals like copper, lead, and zinc. Aerobic processes to degrade pollutants can be achieved during the day and anaerobic processes are performed at night by biofilms. Additionally, because biofilm response to pollutants during initial exposure suggested acute toxicity, biofilms can be used as sensors for pollution.


Wastewater treatment

Biofilms are used in wastewater treatment facilities and constructed wetlands for processes such as cleaning pesticide and fertilizer-laden water because it is simple to form flocs, or aggregates, using biofilms as compared to other floc materials. There are also many other benefits to using phototrophic biofilms in treating wastewater, particularly in nutrient removal. The organisms can sequester nutrients from the wastewater and use these along with carbon dioxide to build biomass. The biomass can capture nitrogen, which can be extracted and used in fertilizer production. Due to their quick growth, phototrophic biofilms have greater nutrient uptake than other methods of nutrient removal utilizing algal biomass, and they are easier to harvest because they naturally grow on wastewater pond surfaces. Phototrophic activity of these films can precipitate dissolved phosphates due to an increase in pH; these phosphates are then removed by assimilation. Increase in pH of the wastewater also minimizes the presence of coliform bacteria. Heavy metal detoxification in wastewater treatment can also be achieved with these microbes primarily through passive mechanisms such as
ion exchange Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
,
chelation Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands are ...
,
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which ...
, and
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
, which constitute
biosorption Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Biosorption can be defined as the ability of biological materials to accumu ...
. The active mode is known as bioaccumulation. Biosorption-mediated metal detoxification is influenced by factors including light intensity, pH, density of the biofilm, and organism tolerance of heavy metals. Though biosorption is an efficient process and inexpensive, methods to retrieve heavy metals from the biomass after biosorption still need further development. Using phototrophic biofilms for wastewater treatment is more energy efficient and economical and has the capability of producing byproducts which can be further processed into biofuels. Specifically cyanobacteria are capable of producing biohydrogen, which is an alternative to fossil fuels and may become a viable source of renewable energy.


References

{{DEFAULTSORT:Phototrophic Biofilms Bacteria Cyanobacteria Environmental microbiology