Photoexcitation
   HOME

TheInfoList



OR:

Photoexcitation is the production of an
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to a ...
of a quantum system by
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
absorption. The
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to a ...
originates from the interaction between a photon and the
quantum system Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
. Photons carry energy that is determined by the wavelengths of the light that carries the photons. Objects that emit light with longer wavelengths, emit photons carrying less energy. In contrast to that, light with shorter wavelengths emit photons with more energy. When the photon interacts with a quantum system, it is therefore important to know what wavelength one is dealing with. A shorter wavelength will transfer more energy to the quantum system than longer wavelengths. On the atomic and molecular scale photoexcitation is the
photoelectrochemical process Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, an ...
of
electron excitation Electron excitation is the transfer of a bound electron to a more energetic, but still bound state. This can be done by photoexcitation (PE), where the electron absorbs a photon and gains all its energy or by collisional excitation (CE), where t ...
by
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
absorption, when the energy of the photon is too low to cause
photoionization Photoionization is the physical process in which an ion is formed from the interaction of a photon with an atom or molecule. Cross section Not every interaction between a photon and an atom, or molecule, will result in photoionization. The prob ...
. The absorption of the photon takes place in accordance with Planck's quantum theory. Photoexcitation plays a role in photoisomerization and is exploited in different techniques: *
Dye-sensitized solar cell A dye-sensitized solar cell (DSSC, DSC, DYSC or Grätzel cell) is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a '' photoelectr ...
s makes use of photoexcitation by exploiting it in cheaper inexpensive mass production solar cells. The solar cells rely on a large surface area in order to catch and absorb as many high energy photons as possible. Shorter
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s are more efficient for the energy conversion compared to longer wavelengths, since shorter wavelengths carry photons that are more energy rich. Light containing shorter wavelengths therefore cause a longer and less efficient conversion of energy in dye-sensitized solar cells. *
Photochemistry Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet (wavelength from 100 to 400  nm), visible light (400–7 ...
*
Luminescence Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light". It is thus a form of cold-body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions or stress on a cryst ...
*Optically pumped lasers use photoexcitation in a way that the excited atoms in the lasers get an enormous direct-gap gain needed for the lasers. The density that is needed for the
population inversion In science, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy ...
in the compound Ge, a material often used in lasers, must become 1020 cm−3, and this is acquired via photoexcitation. The photoexcitation causes the electrons in atoms to go to an excited state. The moment the amount of atoms in the excited state is higher than the amount in the normal ground state, the population inversion occurs. The inversion, like the one caused with
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
, makes it possible for materials to act as lasers. *
Photochromic Photochromism is the reversible transformation of a chemical species (photoswitch) between two forms by the absorption of electromagnetic radiation (photoisomerization), where the two forms have different absorption spectra. In plain language, th ...
applications. Photochromism causes a transformation of two forms of a molecule by absorbing a photon. For example the BIPS molecule( 2H-l-benzopyran-2,2-indolines) can convert from trans to cis and back by absorbing a photon. The different forms are associated with different absorption bands. In a cis-form of BIPS, the transient absorption band has a value of 21050 cm−1, in contrast to the band from the trans-form, that has a value of 16950 cm−1. The results were optically visible, where the BIPS in gels turned from a colorless appearance to a brown or pink color after repeatedly being exposed to a high energy UV pump beam. High energy photons cause a transformation in the BIPS molecule making the molecule change its structure. On the nuclear scale photoexcitation includes the production of
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
and
delta baryon The Delta baryons (or baryons, also called Delta resonances) are a family of subatomic particle made of three up or down quarks (u or d quarks), the same constituent quarks that make up the more familiar protons and neutrons. Properties Four ...
resonances in nuclei.


References

{{Reflist Photochemistry Physical chemistry Time-resolved spectroscopy