Phase-fired control (PFC), also called phase cutting or "phase angle control", is a method for power limiting, applied to
AC voltages. It works by modulating a
thyristor
A thyristor () is a solid-state semiconductor device with four layers of alternating P- and N-type materials used for high-power applications. It acts exclusively as a bistable switch (or a latch), conducting when the gate receives a current ...
,
SCR,
triac,
thyratron, or other such gated
diode
A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other.
A diode ...
-like devices into and out of conduction at a predetermined phase of the applied waveform.
Overview
Phase-fired control (PFC) is often used to control the amount of
voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
,
current or
power that a
power supply
A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a r ...
feeds to its load. It does this to create an average value at its output. If the supply has a DC output, its time base is of no importance in deciding when to pulse the supply on or off, as the value that will be pulsed on and off is continuous.
PFC differs from
Pulse-width modulation
Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is a method of reducing the average power delivered by an electrical signal, by effectively chopping it up into discrete parts. The average value of voltage (and current) fed ...
(PWM) in that it addresses supplies that output a modulated waveform, such as the sinusoidal
AC waveform that the national grid outputs. Here, it becomes important for the supply to pulse on and off at the correct position in the modulation cycle for a known value to be achieved; for example, the controller could turn on at the peak of a waveform or at its base if the cycle's time base were not taken into consideration.
Phase-fired controllers take their name from the fact that they trigger a pulse of output at a certain phase of the input's modulation cycle. In essence, a PFC is a controller that can synchronise itself with the modulation present at the input.
Most phase-fired controllers use thyristors or other solid-state switching devices as their control elements. Thyristor-based controllers may utilise
gate turn-off (GTO) thyristors, allowing the controller to not only decide when to switch the output on but when to turn it off, rather than having to wait for the waveform to return to the next
zero crossing.
Output reduction by bucking
A phase-fired controller, like a buck topology
switched-mode power supply, is only able to deliver an output maximum equal to that which is present at its input, minus any losses occurring in the control elements themselves. Provided the modulation during each cycle is predictable or repetitive, as it is on the national grid's AC mains, to obtain an output lower than its input, a phase-fired control simply switches off for a given phase angle of the input's modulation cycle. By triggering the device into conduction at a phase angle greater than 0 degrees, a point after the modulation cycle starts, a fraction of the total energy within each cycle is present at the output.
"Boosting" by derating
To achieve a "boost"-like effect, the PFC designs must be derated such that the maximum present at the input is higher than the nominal output requirements. When the supply is first turned on or operating under nominal conditions, the controller will continually be delivering less than 100% of its input. When a boost is required, the controller delivers a percentage closer to 100% of the maximum input available.
Derating of mains powered, phase-fired controllers is important as they are often used to control
resistive
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels ...
loads, such as heating elements. Over time, the resistance of heating elements can increase. To account for this, a phase-fired control must be able to provide some degree of extra voltage to draw the same heating current through the element. The only way of achieving this is to purposely design the supply to require less than 100% of the input's modulation cycle when the elements are first put in place, progressively opening the supply up towards delivering 100% of the input modulation cycle as the elements age.
Applications
The most common application is in dimmer switches for domestic lighting control.
For industrial applications previously, extremely expensive and heavy multi-tapped
transformer
A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
s were used as the supplies for such elements, with the corresponding winding tap being connected to the element to produce the desired temperature. This limited the temperature resolution to the number of tap combinations available. They often find their way into controllers designed for equipment such as electric ovens and furnaces.
In modern, usually high power, equipment, the transformer is replaced with phase-fired controllers connecting the load directly to the mains, resulting in a substantially cheaper and lighter system. However, the method is usually limited to use in equipment that would be unrealistic without it. This is because the removal of the mains transformer means that the load has electrical continuity with the input. For industrial ovens and furnaces the input is often the national grid AC, which is itself electrically referenced to ground. With the controller's output referenced to ground, a user need only be in contact with earth and one of the output terminals to risk receiving an electrical shock. With many high-power items of equipment running from three-phase 415 V, high current inputs and having any enclosure or framework present earthed (grounded), this is a serious risk that must be carefully assessed.
History
The first patent for phase-fired controllers derives from 1912. However realization was first possible in the 1920s when
mercury-arc valve rectifiers with control grids became available.
However, this method of voltage regulation was not common at the time, because of the limitations of mercury arc valves. It became widespread with the invention of solid-state
thyristor
A thyristor () is a solid-state semiconductor device with four layers of alternating P- and N-type materials used for high-power applications. It acts exclusively as a bistable switch (or a latch), conducting when the gate receives a current ...
s at the end of the 1950s.
See also
Burst-fired controllers
Zero crossing (or burst-firing) control is an approach for electrical control circuits that starts operation with the AC load voltage at close to 0 volts in the AC cycle. This is in relation to solid state relays, such as triacs and silicon contr ...
References
{{DEFAULTSORT:Phase Fired Controllers
Telecommunication theory
Radio modulation modes
Physical layer protocols
Data transmission