In
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, a period is a
number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
that can be expressed as an
integral
In mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented i ...
of an
algebraic function In mathematics, an algebraic function is a function that can be defined
as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations additio ...
over an algebraic domain. Sums and products of periods
remain
Remain may refer to:
* ''Remain'' (José González EP)
* ''Remain'' (KNK EP)
*''Remain'', poetry book by Jennifer Murphy, 2005
*''Remain'', album by Tyrone Wells, 2009
*''Remain'', album by Great Divide, 2002
*''Remain'', album by Them Are Us Too ...
periods, so the periods form a
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
.
Maxim Kontsevich
Maxim Lvovich Kontsevich (russian: Макси́м Льво́вич Конце́вич, ; born 25 August 1964) is a Russian and French mathematician and mathematical physicist. He is a professor at the Institut des Hautes Études Scientifiques an ...
and
Don Zagier
Don Bernard Zagier (born 29 June 1951) is an American-German mathematician whose main area of work is number theory. He is currently one of the directors of the Max Planck Institute for Mathematics in Bonn, Germany. He was a professor at the ''Col ...
gave a survey of periods and introduced some conjectures about them. Periods also arise in computing the integrals that arise from
Feynman diagrams
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduce ...
, and there has been intensive work trying to understand the connections.
Definition
A real number is a period if it is of the form
where
is a
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
and
a
rational function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rat ...
on
with rational coefficients. A complex number is a period if its real and imaginary parts are periods.
An alternative definition allows
and
to be
algebraic functions; this looks more general, but is equivalent. The coefficients of the rational functions and polynomials can also be generalised to algebraic numbers because irrational algebraic numbers are expressible in terms of areas of suitable domains.
In the other direction,
can be restricted to be the constant function
or
, by replacing the integrand with an integral of
over a region defined by a polynomial in additional variables. In other words, a (nonnegative) period is the volume of a region in
defined by a polynomial inequality.
Examples
Besides the algebraic numbers, the following numbers are known to be periods:
* The
natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
of any positive algebraic number ''a'', which is
*
*
Elliptic integral
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in ...
s with rational arguments
* All
zeta constants (the
Riemann zeta function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > ...
of an integer) and
multiple zeta values
* Special values of
hypergeometric functions at algebraic arguments
*
Γ(''p''/''q'')
''q'' for natural numbers ''p'' and ''q''.
An example of a real number that is not a period is given by
Chaitin's constant Ω
In the computer science subfield of algorithmic information theory, a Chaitin constant (Chaitin omega number) or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will ...
. Any other
non-computable number also gives an example of a real number that is not a period. Currently there are no natural examples of
computable number
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive ...
s that have been proved not to be periods, however it is possible to construct artificial examples. Plausible candidates for numbers that are not periods include ''
e'', 1/, and
Euler–Mascheroni constant γ
Euler's constant (sometimes also called the Euler–Mascheroni constant) is a mathematical constant usually denoted by the lowercase Greek letter gamma ().
It is defined as the limiting difference between the harmonic series and the natural ...
.
Properties and motivation
The periods are intended to bridge the gap between the
algebraic number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s and the
transcendental numbers
In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and .
Though only a few classes ...
. The class of algebraic numbers is too narrow to include many common
mathematical constant
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Cons ...
s, while the set of transcendental numbers is not
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
, and its members are not generally
computable
Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is close ...
.
The set of all periods is
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
, and all periods are
computable
Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is close ...
, and in particular
definable.
Conjectures
Many of the constants known to be periods are also given by integrals of
transcendental function
In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function.
In other words, a transcendental function "transcends" algebra in that it cannot be expressed alge ...
s. Kontsevich and Zagier note that there "seems to be no universal rule explaining why certain infinite sums or integrals of transcendental functions are periods".
Kontsevich and Zagier conjectured that, if a period is given by two different integrals, then each integral can be transformed into the other using only the linearity of integrals (in both the integrand and the domain),
changes of variables, and the
Newton–Leibniz formula
:
(or, more generally, the
Stokes formula).
A useful property of algebraic numbers is that equality between two algebraic expressions can be determined algorithmically. The conjecture of Kontsevich and Zagier would imply that equality of periods is also decidable:
inequality of computable reals is known
recursively enumerable
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if:
*There is an algorithm such that the ...
; and conversely if two integrals agree, then an algorithm could confirm so by trying all possible ways to transform one of them into the other one.
It is conjectured that
Euler's number
The number , also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of a logarithm, base of the natural logarithms. It is the Limit of a sequence, limit ...
''e'' and
Euler–Mascheroni constant γ are not periods.
Generalizations
The periods can be extended to ''exponential periods'' by permitting the integrand
to be the product of an algebraic function and the
exponential function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
of an algebraic function. This extension includes all algebraic powers of ''e'', the
gamma function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except ...
of rational arguments, and values of
Bessel function
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation
x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0
for an arbitrary ...
s.
Kontsevich and Zagier suggest that there are "indications" that periods can be naturally generalized even further, to include Euler's constant γ. With this inclusion, "all classical constants are periods in the appropriate sense".
See also
*
Jacobian variety
In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelian vari ...
*
Gauss–Manin connection In mathematics, the Gauss–Manin connection is a connection on a certain vector bundle over a base space ''S'' of a family of algebraic varieties V_s. The fibers of the vector bundle are the de Rham cohomology groups H^k_(V_s) of the fibers V_s ...
*
Mixed motives (math)
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham coho ...
*
Tannakian formalism
In mathematics, a Tannakian category is a particular kind of monoidal category ''C'', equipped with some extra structure relative to a given field ''K''. The role of such categories ''C'' is to approximate, in some sense, the category of linear re ...
References
*
*
Footnotes
Further reading
*
*
External links
PlanetMath: Period
{{Number systems
Mathematical constants
Algebraic geometry
Integral calculus