Period (algebraic Geometry)
   HOME

TheInfoList



OR:

In algebraic geometry, a period is a
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
that can be expressed as an
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along wit ...
of an
algebraic function In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations additi ...
over an algebraic domain. Sums and products of periods remain periods, so the periods form a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
.
Maxim Kontsevich Maxim Lvovich Kontsevich (russian: Макси́м Льво́вич Конце́вич, ; born 25 August 1964) is a Russian and French mathematician and mathematical physicist. He is a professor at the Institut des Hautes Études Scientifiques an ...
and
Don Zagier Don Bernard Zagier (born 29 June 1951) is an American-German mathematician whose main area of work is number theory. He is currently one of the directors of the Max Planck Institute for Mathematics in Bonn, Germany. He was a professor at the ''Co ...
gave a survey of periods and introduced some conjectures about them. Periods also arise in computing the integrals that arise from
Feynman diagrams In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduce ...
, and there has been intensive work trying to understand the connections.


Definition

A real number is a period if it is of the form \int_Q(x,y,z,\ldots) \mathrmx\mathrmy\mathrmz\ldots where P is a
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
and Q a rational function on \mathbb^n with rational coefficients. A complex number is a period if its real and imaginary parts are periods. An alternative definition allows P and Q to be algebraic functions; this looks more general, but is equivalent. The coefficients of the rational functions and polynomials can also be generalised to algebraic numbers because irrational algebraic numbers are expressible in terms of areas of suitable domains. In the other direction, Q can be restricted to be the constant function 1 or -1, by replacing the integrand with an integral of \pm 1 over a region defined by a polynomial in additional variables. In other words, a (nonnegative) period is the volume of a region in \mathbb^n defined by a polynomial inequality.


Examples

Besides the algebraic numbers, the following numbers are known to be periods: * The natural logarithm of any positive algebraic number ''a'', which is \int_1^\frac\ \mathrmx * =\int_0^1\frac\ \mathrmx *
Elliptic integral In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in ...
s with rational arguments * All zeta constants (the Riemann zeta function of an integer) and multiple zeta values * Special values of hypergeometric functions at algebraic arguments * Γ(''p''/''q'')''q'' for natural numbers ''p'' and ''q''. An example of a real number that is not a period is given by Chaitin's constant Ω. Any other non-computable number also gives an example of a real number that is not a period. Currently there are no natural examples of
computable number In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive ...
s that have been proved not to be periods, however it is possible to construct artificial examples. Plausible candidates for numbers that are not periods include '' e'', 1/, and Euler–Mascheroni constant γ.


Properties and motivation

The periods are intended to bridge the gap between the algebraic numbers and the
transcendental numbers In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and . Though only a few classes o ...
. The class of algebraic numbers is too narrow to include many common mathematical constants, while the set of transcendental numbers is not
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
, and its members are not generally
computable Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is close ...
. The set of all periods is
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
, and all periods are
computable Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is close ...
, and in particular definable.


Conjectures

Many of the constants known to be periods are also given by integrals of
transcendental function In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed alge ...
s. Kontsevich and Zagier note that there "seems to be no universal rule explaining why certain infinite sums or integrals of transcendental functions are periods". Kontsevich and Zagier conjectured that, if a period is given by two different integrals, then each integral can be transformed into the other using only the linearity of integrals (in both the integrand and the domain), changes of variables, and the Newton–Leibniz formula : \int_a^b f'(x) \, dx = f(b) - f(a) (or, more generally, the Stokes formula). A useful property of algebraic numbers is that equality between two algebraic expressions can be determined algorithmically. The conjecture of Kontsevich and Zagier would imply that equality of periods is also decidable: inequality of computable reals is known
recursively enumerable In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the ...
; and conversely if two integrals agree, then an algorithm could confirm so by trying all possible ways to transform one of them into the other one. It is conjectured that
Euler's number The number , also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of the natural logarithms. It is the limit of as approaches infinity, an expressi ...
''e'' and Euler–Mascheroni constant γ are not periods.


Generalizations

The periods can be extended to ''exponential periods'' by permitting the integrand Q to be the product of an algebraic function and the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
of an algebraic function. This extension includes all algebraic powers of ''e'', the
gamma function In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except ...
of rational arguments, and values of
Bessel function Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrar ...
s. Kontsevich and Zagier suggest that there are "indications" that periods can be naturally generalized even further, to include Euler's constant γ. With this inclusion, "all classical constants are periods in the appropriate sense".


See also

*
Jacobian variety In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelian var ...
*
Gauss–Manin connection In mathematics, the Gauss–Manin connection is a connection on a certain vector bundle over a base space ''S'' of a family of algebraic varieties V_s. The fibers of the vector bundle are the de Rham cohomology groups H^k_(V_s) of the fibers V_s o ...
* Mixed motives (math) *
Tannakian formalism In mathematics, a Tannakian category is a particular kind of monoidal category ''C'', equipped with some extra structure relative to a given field ''K''. The role of such categories ''C'' is to approximate, in some sense, the category of linear re ...


References

* * Footnotes


Further reading

* *


External links


PlanetMath: Period
{{Number systems Mathematical constants Algebraic geometry Integral calculus