
In
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
, a dielectric (or dielectric medium) is an
electrical insulator that can be
polarised by an applied
electric field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
. When a dielectric material is placed in an electric field,
electric charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
s do not flow through the material as they do in an
electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of
dielectric polarisation
In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mater ...
, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field (for example, if the field is moving parallel to the positive ''x'' axis, the negative charges will shift in the negative ''x'' direction). This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly
bonded molecules, those molecules not only become polarised, but also reorient so that their
symmetry axes align to the field.
The study of dielectric properties concerns storage and dissipation of electric and
magnetic energy
Magnetic energy and electrostatic potential energy are related by Maxwell's equations. The potential energy of a magnet or magnetic moment \mathbf in a magnetic field \mathbf is defined as the mechanical work of the magnetic force (actually magnet ...
in materials. Dielectrics are important for explaining various phenomena in
electronics
The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
,
optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
,
solid-state physics
Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the l ...
and
cell biophysics Cell biophysics (or cellular biophysics) is a sub-field of biophysics that focuses on physical principles underlying cell function. Sub-areas of current interest include statistical models of intracellular signaling dynamics, intracellular transport ...
.
Terminology
Although the term ''
insulator'' implies low
electrical conduction, ''dielectric'' typically means materials with a high
polarisability. The latter is expressed by a number called the
relative permittivity. The term insulator is generally used to indicate electrical obstruction while the term dielectric is used to indicate the
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
storing capacity of the material (by means of polarisation). A common example of a dielectric is the electrically insulating material between the metallic plates of a
capacitor. The polarisation of the dielectric by the applied electric field increases the capacitor's surface charge for the given electric field strength.
[
The term '' dielectric'' was coined by William Whewell (from '' dia'' + ''electric'') in response to a request from Michael Faraday. A ''perfect dielectric'' is a material with zero electrical conductivity ( cf. perfect conductor infinite electrical conductivity), thus exhibiting only a displacement current; therefore it stores and returns electrical energy as if it were an ideal capacitor.
]
Electric susceptibility
The electric susceptibility ''χe'' of a dielectric material is a measure of how easily it polarises in response to an electric field. This, in turn, determines the electric permittivity of the material and thus influences many other phenomena in that medium, from the capacitance of capacitors to the speed of light.
It is defined as the constant of proportionality (which may be a tensor) relating an electric field E to the induced dielectric polarisation density P such that
where ''ε''0 is the electric permittivity of free space.
The susceptibility of a medium is related to its relative permittivity ''εr'' by
So in the case of a vacuum,
The electric displacement
In physics, the electric displacement field (denoted by D) or electric induction is a vector field that appears in Maxwell's equations. It accounts for the effects of free and bound charge within materials. "D" stands for "displacement", as in ...
D is related to the polarisation density P by
Dispersion and causality
In general, a material cannot polarise instantaneously in response to an applied field. The more general formulation as a function of time is
That is, the polarisation is a convolution of the electric field at previous times with time-dependent susceptibility given by ''χe''(Δ''t''). The upper limit of this integral can be extended to infinity as well if one defines for . An instantaneous response corresponds to Dirac delta function
In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire ...
susceptibility .
It is more convenient in a linear system to take the Fourier transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
and write this relationship as a function of frequency. Due to the convolution theorem, the integral becomes a simple product,
The susceptibility (or equivalently the permittivity) is frequency dependent. The change of susceptibility with respect to frequency characterises the dispersion properties of the material.
Moreover, the fact that the polarisation can only depend on the electric field at previous times (i.e., for ), a consequence of causality
Causality (also referred to as causation, or cause and effect) is influence by which one event, process, state, or object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cau ...
, imposes Kramers–Kronig constraints on the real and imaginary parts of the susceptibility ''χe''(''ω'').
Dielectric polarisation
Basic atomic model
In the classical approach to the dielectric, the material is made up of atoms. Each atom consists of a cloud of negative charge (electrons) bound to and surrounding a positive point charge at its center. In the presence of an electric field, the charge cloud is distorted, as shown in the top right of the figure.
This can be reduced to a simple dipole using the superposition principle
The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So tha ...
. A dipole is characterised by its dipole moment, a vector quantity shown in the figure as the blue arrow labeled ''M''. It is the relationship between the electric field and the dipole moment that gives rise to the behaviour of the dielectric. (Note that the dipole moment points in the same direction as the electric field in the figure. This isn't always the case, and is a major simplification, but is true for many materials.)
When the electric field is removed the atom returns to its original state. The time required to do so is the so-called relaxation time; an exponential decay.
This is the essence of the model in physics. The behaviour of the dielectric now depends on the situation. The more complicated the situation, the richer the model must be to accurately describe the behaviour. Important questions are:
*Is the electric field constant or does it vary with time? At what rate?
*Does the response depend on the direction of the applied field ( isotropy of the material)?
*Is the response the same everywhere ( homogeneity of the material)?
*Do any boundaries or interfaces have to be taken into account?
*Is the response linear with respect to the field, or are there nonlinearities?
The relationship between the electric field E and the dipole moment M gives rise to the behaviour of the dielectric, which, for a given material, can be characterised by the function F defined by the equation:
When both the type of electric field and the type of material have been defined, one then chooses the simplest function ''F'' that correctly predicts the phenomena of interest. Examples of phenomena that can be so modelled include:
* Refractive index
*Group velocity dispersion
In optics, group velocity dispersion (GVD) is a characteristic of a dispersive medium, used most often to determine how the medium will affect the duration of an optical pulse traveling through it. Formally, GVD is defined as the derivative of the ...
*Birefringence
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefring ...
* Self-focusing
* Harmonic generation
Dipolar polarisation
Dipolar polarisation is a polarisation that is either inherent to polar molecules (orientation polarisation), or can be induced in any molecule in which the asymmetric distortion of the nuclei is possible (distortion polarisation). Orientation polarisation results from a permanent dipole, e.g., that arising from the 104.45° angle between the asymmetric bonds between oxygen and hydrogen atoms in the water molecule, which retains polarisation in the absence of an external electric field. The assembly of these dipoles forms a macroscopic polarisation.
When an external electric field is applied, the distance between charges within each permanent dipole, which is related to chemical bonding, remains constant in orientation polarisation; however, the direction of polarisation itself rotates. This rotation occurs on a timescale that depends on the torque and surrounding local viscosity of the molecules. Because the rotation is not instantaneous, dipolar polarisations lose the response to electric fields at the highest frequencies. A molecule rotates about 1 radian per picosecond in a fluid, thus this loss occurs at about 1011 Hz (in the microwave region). The delay of the response to the change of the electric field causes friction an