Peptide therapeutics are
peptide
Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides.
A ...
s or
polypeptides
Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides.
A p ...
(
oligomer
In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
s or short
polymer
A polymer (; Greek '' poly-'', "many" + ''-mer'', "part")
is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s of
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s) which are used to for the treatment of
disease
A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
s. Naturally occurring peptides may serve as
hormone
A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
s,
growth factor
A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regu ...
s,
neurotransmitter
A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell.
Neuro ...
s,
ion channel ligands, and
anti-infectives
An infection is the invasion of tissues by pathogens, their multiplication, and the reaction of host tissues to the infectious agent and the toxins they produce. An infectious disease, also known as a transmissible disease or communicable dis ...
; peptide therapeutics mimic such functions. Peptide Therapeutics are seen as relatively safe and well-tolerated as peptides can be
metabolized
Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
by the body.
Examples
The current highest selling marketed diabetic drug
Liraglutide
Liraglutide, sold under the brand name Victoza among others, is an anti-diabetic medication used to treat type 2 diabetes, obesity, and chronic weight management. In diabetes it is a less preferred agent compared to metformin. Its effects on lo ...
, incorporates a lipid chain to extent plasma circulation and ensures prolonged bioavailability. Liraglutide is a
GLP-1 agonist
Glucagon-like peptide-1 receptor agonists, also known as GLP-1 receptor agonists (GLP-1-RA) or incretin mimetics, are agonists of the GLP-1 receptor. This class of medications is used for the treatment of type 2 diabetes Some drugs are also approve ...
drug that
self-assembles into an alpha-helical structure, and it requires once a day administration. Lipid conjugation of a
palmitoyl chain
Palmitoylation is the covalent attachment of fatty acids, such as palmitic acid, to cysteine (''S''-palmitoylation) and less frequently to serine and threonine (''O''-palmitoylation) residues of proteins, which are typically membrane protein ...
to a lysine residue at position 26 of Liraglutide results in an extended half-life (around 13–14 hours) in the blood. This is due to the palmitoyl chain allowing non covalent binding to
albumin
Albumin is a family of globular proteins, the most common of which are the serum albumins. All the proteins of the albumin family are water-soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Albumins ...
, which delays proteolytic attack by
DPP IV and also rapid renal clearance. Furthermore, the addition of the lipid chain could further prolong
half-life
Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
by sterically hindering the DPP IV enzyme from degradation.
Another peptide known to self-assemble is the octapeptide
Lanreotide
Lanreotide, sold under the brand name Somatuline among others, is a medication used in the management of acromegaly and symptoms caused by neuroendocrine tumors, most notably carcinoid syndrome. It is a long-acting analogue of somatostatin, li ...
. This compound is a synthetic analogue of the peptide hormone
somatostatin
Somatostatin, also known as growth hormone-inhibiting hormone (GHIH) or by several other names, is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via interaction with G protein-couple ...
and it is used to treat
acromegaly
Acromegaly is a disorder that results from excess growth hormone (GH) after the growth plates have closed. The initial symptom is typically enlargement of the hands and feet. There may also be an enlargement of the forehead, jaw, and nose. Other ...
(a condition where the body produced too much growth hormone). In water, Lanreotide self-assembles into
monodisperse liquid crystalline nanotubes. The nanotubes are made up of dimers that self-assemble into a 2D crystal, which is held together by lateral chain interactions, and also by antiparallel ß-sheets.
Further insight into how self-assembly and peptide hormones are related has been provided by studies on self-assembling amyloid structures formed by peptide hormones and neuropeptides. Peptide hormones and neuropeptides form dense-cored aggregates that pack into dense-core vesicles (DCVs), which are used to temporarily store peptide messengers in secretory cells.
When dense-core vesicles are triggered, they release the stored information into the blood or extracellular space, resulting in amyloid disassembly, in order for action.
Therefore, for these types of peptides, reversibility of peptide aggregation is essential for their function.
Increasing stability of peptide drugs
Many strategies have been employed to increase the stability of peptide drugs, because although they have so many desirable characteristics, they are short lived in the body as a result of rapid degradation and clearance. With half-lives of some peptides and proteins only being a few minutes, they are very ineffective in drug delivery. Mechanisms involved in their clearance include peripheral blood mediated elimination by
proteolysis
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called protease ...
, real and hepatic elimination, and also receptor-mediated endocytosis. One of the main reasons for such rapid clearance is
molecular weight
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
. Molecules that have a low molecular weight (40-50 kDa) are rapidly cleared by
renal filtration
Renal physiology (Latin ''rēnēs'', "kidneys") is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, ...
via the glomerular filtration barrier (GBM) into the urine. As a result of this, increasing the size of a peptide drug is a good starting point to improve half-life.
Peptide modifications to extend half-life include
PEGylation
PEGylation (or pegylation) is the process of both covalent and non-covalent attachment or amalgamation of polyethylene glycol (PEG, in pharmacy called macrogol) polymer chains to molecules and macrostructures, such as a drug, therapeutic protein ...
,
glycosylation
Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not al ...
,
cyclization
A cyclic compound (or ring compound) is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where al ...
,
serum albumin
Serum albumin, often referred to simply as blood albumin, is an albumin (a type of globular protein) found in vertebrate blood. Human serum albumin is encoded by the ''ALB'' gene. Other mammalian forms, such as bovine serum albumin, are chemical ...
binding, and
lipidation
Lipid-anchored proteins (also known as lipid-linked proteins) are proteins located on the surface of the cell membrane that are covalently attached to lipids embedded within the cell membrane. These proteins insert and assume a place in the bilay ...
.
PEGylation
PEGylation (or pegylation) is the process of both covalent and non-covalent attachment or amalgamation of polyethylene glycol (PEG, in pharmacy called macrogol) polymer chains to molecules and macrostructures, such as a drug, therapeutic protein ...
is the attachment of
polyethylene glycol
Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular we ...
(PEG) chains to the peptide via covalent bonds, helping to increase molecular weight, and limit enzymatic degradation as a result of steric hindrance caused by adding the PEG. PEGylation offers a number of benefits for pharmaceutical applications such as improved water solubility, high mobility in solution, as well as low toxicity and low
immunogenicity
Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted:
* Wanted immunogenicity typically relates to vaccines, where the injectio ...
. This does however depend on the molecular weight of the attached PEG.
PEGylation as a method to improve half-life has been successfully demonstrated many times; in one example it was shown that site specific mono-PEGylation of GLP-1 led to a 16-fold increase in plasma half life time in rats. On the other hand, covalently attaching PEG can often lead to loss of biological activity.
Another chemical modification is the attachment of glycosyl (carbohydrate) units to the peptide to help with peptide delivery to target sights. The introduction of
carbohydrate
In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or ma ...
s to peptides can alter the physiological properties, to improve bioavailability. Advantages of this technique include increased metabolic stability, and facilitated transport across cell membranes, although of the most favourable aspects is their ability to promote oral absorption.
Peptides have a very low
oral availability (less than 1-2%),
as a result of insufficient absorption and rapid degradation and clearance, thus making this method an attractive one.
N- and
O-glycosylation
''O''-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine (Ser) or threonine (Thr) residues in a protein. ''O''-glycosylation is a post-translational modification that occurs after the protein has been synthesise ...
in which carbohydrates are attached to the peptide are naturally occurring, where
N-glycosylation
''N''-linked glycosylation, is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom (the amide nitrogen of an asparagine (Asn) residue of a protein), ...
occurs through the amine group of an
asparagine residue to form an amide bond. O-glycosylation occurs via
serine
Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
or
threonine residues, where the oxygen atom on the side chain binds to the carbohydrate through an ether bond. There is also non-natural glycosylation, known as chemical glycosylation, which involves the attachment of carbohydrate units to different amino acid residues at the N-terminus of the peptide's sequence. A further way of carrying out glycosylation is by using enzymes, known as chemo-enzymatic glycosylation. This method is used for complex chemical synthesis. Chemical and chemo-enzymatic methods can be used for the synthesis of
glycopeptides
Glycopeptides are peptides that contain carbohydrate moieties (glycans) covalently attached to the side chains of the amino acid residues that constitute the peptide.
Over the past few decades it has been recognised that glycans on cell surfac ...
and
glycoproteins
Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycos ...
.
Cyclization can also be used as a method to decrease
proteolytic degradation
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, ...
and prolong half-life, to make the
peptide conformation more rigid to hinder enzymatic cleavage. This method can however lead to loss of biological function due to the reduced flexibility making the peptide inactive. For example, side chain to side chain cyclization between asparagine (position 8) and lysine (position 12), of a growth regulating factor (GRF) analogue was found to increase the half-life from 17 minutes to more than 2 hours.
Another way to extend half-life do is to bind
serum albumin
Serum albumin, often referred to simply as blood albumin, is an albumin (a type of globular protein) found in vertebrate blood. Human serum albumin is encoded by the ''ALB'' gene. Other mammalian forms, such as bovine serum albumin, are chemical ...
to the peptide. Human serum albumin is the most abundant plasma protein with a molecular weight of 66.4 kDa, and it is involved in many essential bodily functions to maintain homeostasis. As a result, albumin binding would significantly increase the molecular weight of the peptide, restricting it from being filtered into the urine by the GBM. Serum albumin has an extraordinary long half-life of 2-4 weeks which is much longer than other plasma proteins, due to it binding to the neonatal Fc receptor (FcRn). Fc receptors are proteins found on the surface of certain cells that help to protect the functions of the immune system, by binding to the Fc region of antibodies, which attach to pathogens and destroy them. This mechanism of the neonatal FcRn involves albumin binding to the FcRn in an acidic pH environment to divert it from degradation in the lysosomal compartment of the cell, and redirecting it to the plasma membrane, where it is released back into the blood plasma due to neutral pH.
Lipidation
Lipid-anchored proteins (also known as lipid-linked proteins) are proteins located on the surface of the cell membrane that are covalently attached to lipids embedded within the cell membrane. These proteins insert and assume a place in the bilay ...
is a further technique to use when improving peptide stability and half-life. Attaching a lipid chain to the peptide head group has been found to inhibit proteolytic attack due to the lipid chain non-covalently interacting with serum albumin to increase the molecular weight, thus reducing renal filtration. Studies on a lipidated analogue of insulin, detemir, revealed a prolonged action as a result of its affinity for human serum albumin. As well as this, lipidation has been shown to enhance the interaction of peptides with cell membranes, allowing them to be up taken into the cell more readily compared to the peptide lacking the lipid moiety. There are three types of lipidation, and they differ based on the bond formation methods between the lipid and the peptide:
amidation
In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula , where R, R', and R″ represent organic groups or hydrogen atoms. The amide group is called a peptide bond when it is p ...
,
esterification
In chemistry, an ester is a compound derived from an oxoacid (organic or inorganic) in which at least one hydroxyl group () is replaced by an alkoxy group (), as in the substitution reaction of a carboxylic acid and an alcohol. Glycerides ar ...
(S- or O-) and S-bond (ether or disulphide) formation. Amidation and O-esterification form strong covalent bonds that are irreversible, whereas the other two methods are weak and reversible covalent bonds. The method used, as well as the alkyl/lipid chain, position of lipidation, and the spacer used, all have significant impacts on physiochemical properties and bioactivity.
The level of lipophilicity can be significantly modulated by lipidation, and since lipophilicity is detrimental for the absorption, distribution, metabolism, and excretion of drugs, it provides a way of fine tuning peptides for use in therapeutics.
A study on lipidation and PEGylation on the GLP-1 peptide was carried out and the results showed that lipidation had no significant effect on peptide activity in vitro, whereas PEGylation did, especially when the PEG is attached to internal amino acids of the peptide e.g. positions 20 and 21. The reduction in activity from PEGylation compared to lipidation is due to the loss of receptor affinity, and it is suggested that this is because of its increased molecular weight which causes steric hindrance.
References
{{Reflist
Peptides
Drugs