Pentiruncicantellated 7-orthoplex
   HOME

TheInfoList



OR:

In seven-dimensional geometry, a pentellated 7-orthoplex is a convex uniform 7-polytope with 5th order truncations ( pentellation) of the regular 7-orthoplex. There are 32 unique of the 7-orthoplex with permutations of truncations, cantellations, runcinations, and . 16 are more simply constructed relative to the 7-cube. These polytopes are a part of a set of 127 uniform 7-polytopes with B7 symmetry.


Pentellated 7-orthoplex


Alternate names

* Small hecatonicosoctaexon (acronym: Staz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,1,1,1,1,2)


Images


Pentitruncated 7-orthoplex


Alternate names

* Teritruncated hecatonicosoctaexon (acronym: Tetaz) (Jonathan Bowers)


Images


Coordinates

Coordinates are permutations of (0,1,1,1,1,2,3).


Penticantellated 7-orthoplex


Alternate names

* Terirhombated hecatonicosoctaexon (acronym: Teroz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,1,1,2,2,3).


Images


Penticantitruncated 7-orthoplex


Alternate names

* Terigreatorhombated hecatonicosoctaexon (acronym: Tograz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,1,1,2,3,4).


Pentiruncinated 7-orthoplex


Alternate names

* Teriprismated hecatonicosoctaexon (acronym: Topaz) (Jonathan Bowers)


Coordinates

The coordinates are permutations of (0,1,1,2,2,2,3).


Images


Pentiruncitruncated 7-orthoplex


Alternate names

* Teriprismatotruncated hecatonicosoctaexon (acronym: Toptaz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,1,2,2,3,4).


Images


Pentiruncicantellated 7-orthoplex


Alternate names

* Teriprismatorhombated hecatonicosoctaexon (acronym: Toparz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,1,2,3,3,4).


Images


Pentiruncicantitruncated 7-orthoplex


Alternate names

* Terigreatoprismated hecatonicosoctaexon (acronym: Tegopaz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,1,2,3,4,5).


Images


Pentistericated 7-orthoplex


Alternate names

* Tericellated hecatonicosoctaexon (acronym: Tocaz) (Jonathan Bowers)


Images


Coordinates

Coordinates are permutations of (0,1,2,2,2,2,3).


Pentisteritruncated 7-orthoplex


Alternate names

* Tericellitruncated hecatonicosoctaexon (acronym: Tacotaz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,2,2,2,3,4).


Images


Pentistericantellated 7-orthoplex


Alternate names

* Tericellirhombated hecatonicosoctaexon (acronym: Tocarz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,2,2,3,3,4).


Images


Pentistericantitruncated 7-orthoplex


Alternate names

* Tericelligreatorhombated hecatonicosoctaexon (acronym: Tecagraz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,2,2,3,4,5).


Images


Pentisteriruncinated 7-orthoplex


Alternate names

* Bipenticantitruncated 7-orthoplex as t1,2,3,6 * Tericelliprismated hecatonicosoctaexon (acronym: Tecpaz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,2,3,3,3,4).


Images


Pentisteriruncitruncated 7-orthoplex


Alternate names

* Tericelliprismatotruncated hecatonicosoctaexon (acronym: Tecpotaz) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,2,3,3,4,5).


Images


Pentisteriruncicantellated 7-orthoplex


Alternate names

* Bipentiruncicantitruncated 7-orthoplex as t1,2,3,4,6 * Tericelliprismatorhombated hecatonicosoctaexon (acronym: Tacparez) (Jonathan Bowers)


Coordinates

Coordinates are permutations of (0,1,2,3,4,4,5).


Images


Pentisteriruncicantitruncated 7-orthoplex


Alternate names

* Great hecatonicosoctaexon (acronym: Gotaz) (Jonathan Bowers)Klitzing, (x3x3x3x3x3x4o - )


Coordinates

Coordinates are permutations of (0,1,2,3,4,5,6).


Images


Notes


References

*
H.S.M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. *


External links


Polytopes of Various Dimensions


{{Polytopes 7-polytopes