Definition
The term ‘participatory monitoring’ embraces a broad range of approaches, from self-monitoring of harvests by local resource users themselves, to censuses by local rangers, and inventories by amateur naturalists. The term includes techniques labelled as ‘self-monitoring’,Constantino, P. A. L., R. A. Tavares, J. L. Kaxinawa, F. M. Macário, E. Kaxinawa e A. S. Kaxinawa. 2012. Mapeamento e monitoramento participativo da caça na Kaxinawá da Praia do Carapanã Indigenous Land, Acre, Amazônia Brasileira. In: Sistema de informações geográficas e a conservação da biodiversidade. Paese, A., Uezu, A., Lorini, M. L., Cunha, A. (eds.). Oficina do Texto, São Paulo, Brasil. ranger-based monitoring’, ‘event-monitoring’, ‘participatory assessment, monitoring and evaluation of biodiversity’, ‘community-based observing’, and ‘community-based monitoring and information systems’. Many of these approaches are directly linked to resource management, but the entities being monitored vary widely, from individual animals and plants, through habitats, to ecosystem goods and services. However, all of the approaches have in common that the monitoring is carried out by individuals who live in the monitored places and rely on local natural resources, and that local people or local government staff are directly involved in formulation of research questions, data collection, and (in most instances) data analysis, and implementation of management solutions based on research findings. Participatory monitoring is included in the term ’participatory monitoring and management’ which has been defined as "approaches used by local and Indigenous communities, informed by traditional and local knowledge, and, increasingly, by contemporary science, to assess the status of resources and threats on their land and advance sustainable economic opportunities based on the use of natural resources". term ’participatory monitoring and management’ is particularly used in tropical, Arctic and developing regions, where communities are most often the custodians of valuable biodiversity and extensive natural ecosystems.Alternative definitions
Other definitions for participatory monitoring have also been proposed, including: #"The systematic collection of information at regular intervals for initial assessment and for the monitoring of change. This collection is undertaken by locals in a community who do not have professional training". Likewise, the term ’community-based monitoring of natural resources’ has been defined as: #"A process where concerned citizens, government agencies, industry, academia, community groups and local institutions collaborate to monitor, track, and respond to issues of common community concern". # #"Monitoring of natural resources undertaken by local stakeholders using their own resources and in relation to aims and objectives that make sense to them". # #"A process of routinely observing environmental or social phenomena, or both, that is led and undertaken by community members and can involve external collaboration and support of visiting researchers and government agencies".Limitations
It has been suggested that participatory monitoring is unlikely to provide quantitative data on large-scale changes in habitat area, or on populations of cryptic species that are hard to identify or census reliably. It has also been suggested that participatory monitoring is not suitable for monitoring resources that are so valuable they attract powerful outsiders. Likewise, in areas where changes, threats, or interventions operate in complex fashions, where rural people do not depend on the use of natural resources and there are no real benefits flowing to the local people from doing monitoring work (or the costs to local people of involvement exceed the benefits), or where there is a poor relationship between the authorities and the local people, participatory monitoring is probably less likely to yield useful data and management solutions than conventional scientific approaches.History
Whereas government censuses of human populations, which date perhaps to the 16th century B.C., were likely the first formal attempts at environmental monitoring, farmers, fishers and forest users have informally monitored resource conditions for even longer, their observations influencing survival strategies and resource use. Participatory monitoring schemes are in operation on all the inhabited continents, and the approach is beginning to appear in textbooks.Conferences
An international symposium on participatory monitoring was hosted by theApproaches
Thematically, participatory monitoring has considerable potential in several areas, including: # For connecting knowledge systems: in efforts to bring Indigenous and local knowledge systems into the science–policy interface such as the Intergovernmental Platform for Biodiversity and Ecosystem Services. # For monitoring rapidly changing environments: to inform resource management in rapidly changing environments such as theTypology
A typology of monitoring schemes has been proposed, determined on the basis of relative contributions of local stakeholders and professional researchers,. and supported by findings from statistical analysis of published schemes. The typology identified 5 categories of monitoring schemes that between them span the full spectrum of natural resource monitoring protocols: Category A. Autonomous Local Monitoring. In this category the whole monitoring process—from design, to data collection, to analysis, and finally to use of data for management decisions—is carried out autonomously by local stakeholders. There is no direct involvement of external agencies. For an example see. Category B. Collaborative Monitoring with Local Data Interpretation. In these schemes, the original initiative was taken by scientists but local stakeholders collect, process and interpret the data, although external scientists may provide advice and training. The original data collected by local people remain in the area being monitored, which helps create local ownership of the scheme and its results, but copies of the data may be sent to professional researchers for in-depth or larger-scale analysis. Examples are included in. Category C. Collaborative Monitoring with External Data Interpretation. The third most distinct group is monitoring scheme category C. These schemes were designed by scientists who also analyse the data, but the local stakeholders collect the data, take decisions on the basis of the findings and carry out the management interventions emanating from the monitoring scheme. Examples are provided in. Category D. Externally Driven Monitoring with Local Data Collectors. This category of monitoring scheme involves local stakeholders only in data collection. The design, analysis, and interpretation of the monitoring results are undertaken by professional researchers—generally far from the site. Monitoring schemes of category D are mostly long-running ‘citizen science’ projects from Europe and North America. See for example Category E. Externally Driven, Professionally Executed Monitoring. Monitoring schemes of category E do not involve local stakeholders. Design of the scheme, analysis of the results, and management decisions derived from these analyses are all undertaken by professional scientists funded by external agencies. An example isThe use of technology for participatory monitoring
Traditional methods of data collection for participatory monitoring use paper and pen. This has advantages in terms of low cost of materials and training, simplicity, and reduced potential for technical hitches. However, all data must be transcribed for analysis, which takes time and can be subject to transcription errors.Forest Compass. 2015. What are the advantages of mobile technology in data collection http://forestcompass.org/what-are-advantages-mobile-technology-data-collection Increasingly, participatory monitoring initiatives incorporate technology, from GPS recorders to georeference the data collected on paper, to drones to survey remote areas, phones to send simple reports via SMS, or smartphones to collect and store data. Various apps exist to create and manage data collection forms on smartphones (e.g. ODK, Sapelli and others). Some initiatives find that the use of smartphones for data collection has advantages over paper-based systems. The advantages include that very little equipment need be carried on a survey, a large amount and variety of data can be stored (geographical locations, photos and audio, as well as data entered onto monitoring forms) and data can be shared rapidly for analysis without transcription errors. The use of smartphones can incentivise young people to get involved in monitoring, sparking an interest in conservation. Some apps are especially designed to be usable by illiterate monitors. If local people risk threats or violence by monitoring illegal activities, the true purpose of the phones can be denied, and the monitoring data locked away. However, phones are expensive; are vulnerable to damage and technical issues; necessitate additional training - not least due to rapid technological change; phone charging can be a challenge (especially under thick forest canopies); and uploading data for analysis is difficult in areas without network connections.Data sharing in participatory monitoring
A key challenge for participatory monitoring is to develop ways to store, manage and share data and to do this in ways that respect the rights of the communities that supplied the data. A ‘rights-based approach to data sharing’ can be based on principles ofSee also
References
Further reading
* Gardner, T.A. 2010. Monitoring Forest Biodiversity: Improving Conservation through Ecologically Responsible Management. Earthscan, London. * Johnson, N. et al. 2015. Community-Based Monitoring in a Changing Arctic: A Review for the Sustaining Arctic Observing Network. Final report of Sustaining Arctic Observing Networks Task #9. Ottawa, ON: Inuit Circumpolar Council. * Lawrence, A. (Ed.). 2010. Taking Stock of Nature. Cambridge Univ. Press, Cambridge, UK. * Nordic Council of Ministers 2015. Local knowledge and resource management. On the use of indigenous and local knowledge to document and manage natural resources in the Arctic. TemaNord 2015-506. Nordic Council of Ministers, Copenhagen, Denmark. {{doi, 10.6027/TN2015-506. * Special issue of Biodiversity and Conservation on the potential of locally based approaches to monitoring of biodiversity and resource use, available at www.monitoringmatters.org (Danielsen et al. 2005b). * Special issue of Polar Geography on local and traditional knowledge and data management in the Arctic http://www.tandfonline.com/toc/tpog20/37/1#.VTd0oTrtU3Q * Tebtebba 2013. Developing and Implementing Community‐Based Monitoring and Information Systems: The Global Workshop and the Philippine Workshop Reports. http://tebtebba.org/index.php/all‐resources/category/8‐ books?download=890:developing‐and‐implementing‐cbmis‐the‐global‐workshop‐and‐ the‐Philippine‐workshop‐reports Measurement Environmental monitoring Crowdsourcing