HOME

TheInfoList



OR:

In
geometric optics Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician ...
, the paraxial approximation is a small-angle approximation used in
Gaussian optics Gaussian optics is a technique in geometrical optics that describes the behaviour of light rays in optical systems by using the paraxial approximation, in which only rays which make small angles with the optical axis of the system are considered. ...
and ray tracing of light through an optical system (such as a
lens A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'') ...
). A paraxial ray is a ray that makes a small angle (''θ'') to the
optical axis An optical axis is an imaginary line that passes through the geometrical center of an optical system such as a camera lens, microscope or telescopic sight. Lens elements often have rotational symmetry about the axis. The optical axis defines ...
of the system, and lies close to the axis throughout the system. Generally, this allows three important approximations (for ''θ'' in
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
s) for calculation of the ray's path, namely: : \sin \theta \approx \theta,\quad \tan \theta \approx \theta \quad \text\quad\cos \theta \approx 1. The paraxial approximation is used in
Gaussian optics Gaussian optics is a technique in geometrical optics that describes the behaviour of light rays in optical systems by using the paraxial approximation, in which only rays which make small angles with the optical axis of the system are considered. ...
and ''first-order'' ray tracing.
Ray transfer matrix analysis Ray transfer matrix analysis (also known as ABCD matrix analysis) is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element (surface, ...
is one method that uses the approximation. In some cases, the second-order approximation is also called "paraxial". The approximations above for sine and tangent do not change for the "second-order" paraxial approximation (the second term in their
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
expansion is zero), while for cosine the second order approximation is : \cos \theta \approx 1 - \ . The second-order approximation is accurate within 0.5% for angles under about 10°, but its inaccuracy grows significantly for larger angles. For larger angles it is often necessary to distinguish between meridional rays, which lie in a plane containing the
optical axis An optical axis is an imaginary line that passes through the geometrical center of an optical system such as a camera lens, microscope or telescopic sight. Lens elements often have rotational symmetry about the axis. The optical axis defines ...
, and sagittal rays, which do not. Use of the small angle approximations replaces dimensionless trigonometric functions with angles in radians. In dimensional analysis on optics equations radians are dimensionless and therefore can be ignored. A paraxial approximation is also commonly used in
physical optics In physics, physical optics, or wave optics, is the branch of optics that studies Interference (wave propagation), interference, diffraction, Polarization (waves), polarization, and other phenomena for which the ray approximation of geometric opti ...
. It is used in the derivation of the paraxial wave equation from the homogeneous
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
and, consequently,
Gaussian beam In optics, a Gaussian beam is an idealized beam of electromagnetic radiation whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. This fundamental (or ...
optics.


References

{{Reflist


External links


Paraxial Approximation and the Mirror
by David Schurig,
The Wolfram Demonstrations Project The Wolfram Demonstrations Project is an open-source collection of interactive programmes called Demonstrations. It is hosted by Wolfram Research. At its launch, it contained 1300 demonstrations but has grown to over 10,000. The site won a Pa ...
. Geometrical optics