Parametric Oscillator
   HOME

TheInfoList



OR:

A parametric oscillator is a driven harmonic oscillator in which the oscillations are driven by varying some parameter of the system at some frequency, typically different from the
natural frequency Natural frequency, also known as eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any driving force. The motion pattern of a system oscillating at its natural frequency is called the normal mode (if all par ...
of the oscillator. A simple example of a parametric oscillator is a child pumping a playground swing by periodically standing and squatting to increase the size of the swing's oscillations. Note: In real-life playgrounds, swings are predominantly driven, not parametric, oscillators. The child's motions vary the
moment of inertia The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceler ...
of the swing as a
pendulum A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the ...
. The "pump" motions of the child must be at twice the frequency of the swing's oscillations. Examples of parameters that may be varied are the oscillator's resonance frequency \omega and damping \beta. Parametric oscillators are used in several areas of physics. The classical
varactor In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction. Applications Vara ...
parametric oscillator consists of a semiconductor
varactor diode In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction. Applications Vara ...
connected to a
resonant circuit An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can ac ...
or
cavity resonator A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator ...
. It is driven by varying the diode's capacitance by applying a varying
bias voltage In electronics, biasing is the setting of DC (direct current) operating conditions (current and voltage) of an active device in an amplifier. Many electronic devices, such as diodes, transistors and vacuum tubes, whose function is processing ...
. The circuit that varies the diode's capacitance is called the "pump" or "driver". In microwave electronics,
waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
/ YAG-based parametric oscillators operate in the same fashion. Another important example is the
optical parametric oscillator An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave (called "pump") with frequency \omega_p into two output waves of lower frequency (\omega_s, \omega_i) by means ...
, which converts an input
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
light wave into two output waves of lower frequency (\omega_s, \omega_i). When operated at pump levels below oscillation, the parametric oscillator can amplify a signal, forming a parametric amplifier (paramp).
Varactor In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction. Applications Vara ...
parametric amplifiers were developed as low-noise amplifiers in the radio and microwave frequency range. The advantage of a parametric amplifier is that it has much lower noise than an amplifier based on a gain device like a
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch e ...
or
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. The type kn ...
. This is because in the parametric amplifier a reactance is varied instead of a (noise-producing) resistance. They are used in very low noise radio receivers in
radio telescope A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency ...
s and
spacecraft communication A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, pl ...
antennas. Parametric resonance occurs in a mechanical system when a system is parametrically excited and oscillates at one of its resonant frequencies. Parametric excitation differs from forcing since the action appears as a time varying modification on a system parameter.


History

Parametric oscillations were first noticed in mechanics.
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
(1831) was the first to notice oscillations of one frequency being excited by forces of double the frequency, in the crispations (ruffled surface waves) observed in a wine glass excited to "sing".
Franz Melde Franz Emil Melde (March 11, 1832 in Großenlüder near Fulda – March 17, 1901 in Marburg) was a German physicist and professor. A graduate of the University of Marburg under Christian Ludwig Gerling, he later taught there, focusing primar ...
(1860) generated parametric oscillations in a string by employing a tuning fork to periodically vary the tension at twice the resonance frequency of the string. Parametric oscillation was first treated as a general phenomenon by Rayleigh (1883,1887). One of the first to apply the concept to electric circuits was
George Francis FitzGerald Prof George Francis FitzGerald (3 August 1851 – 22 February 1901) was an Irish academic and physicist who served as Erasmus Smith's Professor of Natural and Experimental Philosophy at Trinity College Dublin (TCD) from 1881 to 1901. FitzGer ...
, who in 1892 tried to excite oscillations in an
LC circuit An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can ac ...
by pumping it with a varying inductance provided by a dynamo. Parametric amplifiers (paramps) were first used in 1913-1915 for radio telephony from Berlin to Vienna and Moscow, and were predicted to have a useful future (
Ernst Alexanderson Ernst Frederick Werner Alexanderson (January 25, 1878 – May 14, 1975) was a Swedish-American electrical engineer, who was a pioneer in radio and television development. He invented the Alexanderson alternator, an early radio transmitter used b ...
, 1916).Alexanderson, Ernst F.W. (April 1916
"A magnetic amplifier for audio telephony"
''Proceedings of the Institute of Radio Engineers'', 4: 101-149.
These early parametric amplifiers used the nonlinearity of an iron-core
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
, so they could only function at low frequencies. In 1948
Aldert van der Ziel Aldert van der Ziel (12 December 1910, Zandeweer – 20 January 1991, Minneapolis), was a Dutch physicist who studied electronic noise processes in materials such as semiconductors and metals. Biography Aldert van der Ziel was a pioneering resea ...
pointed out a major advantage of the parametric amplifier: because it used a variable reactance instead of a resistance for amplification it had inherently low noise. A parametric amplifier used as the front end of a
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
could amplify a weak signal while introducing very little noise. In 1952 Harrison Rowe at
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
extended some 1934 mathematical work on pumped oscillations by Jack Manley and published the modern mathematical theory of parametric oscillations, the Manley-Rowe relations. The
varactor diode In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction. Applications Vara ...
invented in 1956 had a nonlinear capacitance that was usable into microwave frequencies. The varactor parametric amplifier was developed by Marion Hines in 1956 at
Western Electric The Western Electric Company was an American electrical engineering and manufacturing company officially founded in 1869. A wholly owned subsidiary of American Telephone & Telegraph for most of its lifespan, it served as the primary equipment ma ...
. At the time it was invented microwaves were just being exploited, and the varactor amplifier was the first semiconductor amplifier at microwave frequencies. It was applied to low noise radio receivers in many areas, and has been widely used in
radio telescope A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency ...
s, satellite
ground station A ground station, Earth station, or Earth terminal is a terrestrial radio station designed for extraplanetary telecommunication with spacecraft (constituting part of the ground segment of the spacecraft system), or reception of radio waves fro ...
s, and long-range
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
. It is the main type of parametric amplifier used today. Since that time parametric amplifiers have been built with other nonlinear active devices such as
Josephson junction In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mech ...
s. The technique has been extended to optical frequencies in
optical parametric oscillator An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave (called "pump") with frequency \omega_p into two output waves of lower frequency (\omega_s, \omega_i) by means ...
s and amplifiers which use nonlinear crystals as the active element.


Mathematical analysis

A parametric oscillator is a
harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its Mechanical equilibrium, equilibrium position, experiences a restoring force ''F'' Proportionality (mathematics), proportional to the displacement ''x'': \v ...
whose physical properties vary with time. The equation of such an oscillator is :\frac + \beta(t) \frac + \omega^(t) x = 0 This equation is linear in x(t). By assumption, the parameters \omega^ and \beta depend only on time and do ''not'' depend on the state of the oscillator. In general, \beta(t) and/or \omega^(t) are assumed to vary periodically, with the same period T. If the parameters vary at roughly ''twice'' the
natural frequency Natural frequency, also known as eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any driving force. The motion pattern of a system oscillating at its natural frequency is called the normal mode (if all par ...
of the oscillator (defined below), the oscillator phase-locks to the parametric variation and absorbs energy at a rate proportional to the energy it already has. Without a compensating energy-loss mechanism provided by \beta, the oscillation amplitude grows exponentially. (This phenomenon is called parametric excitation, parametric resonance or parametric pumping.) However, if the initial amplitude is zero, it will remain so; this distinguishes it from the non-parametric resonance of driven simple
harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its Mechanical equilibrium, equilibrium position, experiences a restoring force ''F'' Proportionality (mathematics), proportional to the displacement ''x'': \v ...
s, in which the amplitude grows linearly in time regardless of the initial state. A familiar experience of both parametric and driven oscillation is playing on a swing. Rocking back and forth pumps the swing as a driven harmonic oscillator, but once moving, the swing can also be parametrically driven by alternately standing and squatting at key points in the swing arc. This changes moment of inertia of the swing and hence the resonance frequency, and children can quickly reach large amplitudes provided that they have some amplitude to start with (e.g., get a push). Standing and squatting at rest, however, leads nowhere.


Transformation of the equation

We begin by making a change of variable :q(t) \ \stackrel\ e^ x(t) where D(t) is the time integral of the damping coefficient :D(t) \ \stackrel\ \frac \int_^ \beta(\tau) \, d\tau . This change of variable eliminates the damping term in the differential equation, reducing it to :\frac + \Omega^(t) q = 0 where the transformed frequency is defined as :\Omega^(t) \ \stackrel\ \omega^(t) - \frac \frac - \frac \beta^(t). In general, the variations in damping and frequency are relatively small perturbations :\beta(t) = \omega_ \big + g(t) \big/math> :\omega^(t) = \omega_^ \big + h(t) \big/math> where \omega_ and b are constants, namely, the time-averaged oscillator frequency and damping, respectively. The transformed frequency can then be written in a similar way as :\Omega^(t) = \omega_^ \big + f(t) \big/math>, where \omega_ is the
natural frequency Natural frequency, also known as eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any driving force. The motion pattern of a system oscillating at its natural frequency is called the normal mode (if all par ...
of the damped harmonic oscillator :\omega_^ \ \stackrel\ \omega_^ \left( 1 - \frac \right) and :f(t) \ \stackrel\ \frac \left h(t) - \frac \frac - \frac g(t) - \frac g^(t) \right/math>. Thus, our transformed equation can be written as :\frac + \omega_^ \big + f(t) \bigq = 0. The independent variations g(t) and h(t) in the oscillator damping and resonance frequency, respectively, can be combined into a single pumping function f(t). The converse conclusion is that any form of parametric excitation can be accomplished by varying either the resonance frequency or the damping, or both.


Solution of the transformed equation

Let us assume that f(t) is sinusoidal with a frequency approximately twice the natural frequency of the oscillator: :f(t) = f_ \sin (2\omega_t) where the pumping frequency \omega_ \approx \omega_ but need not equal \omega_ exactly. Using the method of
variation of parameters In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations. For first-order inhomogeneous linear differential equations it is usually possible t ...
, the solution q(t) to our transformed equation may be written as :q(t) = A(t) \cos (\omega_t) + B(t) \sin (\omega_t) where the rapidly varying components, \cos (\omega_t) and \sin (\omega_t), have been factored out to isolate the slowly varying amplitudes A(t) and B(t). We proceed by substituting this solution into the differential equation and considering that both the coefficients in front of \cos (\omega_t) and \sin (\omega_t) must be zero to satisfy the differential equation identically. We also omit the second derivatives of A(t) and B(t) on the grounds that A(t) and B(t) are slowly varying, as well as omit sinusoidal terms not near the natural frequency, \omega_, as they do not contribute significantly to resonance. The result is the following pair of coupled differential equations: :2\omega_ \frac = \frac f_0 \omega_^ A - \left( \omega_^ - \omega_^ \right) B :2\omega_ \frac = \left( \omega_^ - \omega_^ \right) A - \frac f_0 \omega_^ B. This
system of linear differential equations In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = ...
with constant coefficients can be decoupled and solved by
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
/
eigenvector In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
methods. This yields the solution :\begin A(t)\\ B(t) \end = c_1 \vec e^ + c_2 \vec e^ where \lambda_1 and \lambda_2 are the eigenvalues of the matrix :\frac\begin \frac f_0 \omega_^ & - \left( \omega_^ - \omega_^ \right) \\ \omega_^ - \omega_^ & -\frac f_0 \omega_^ \end, \vec and \vec are corresponding eigenvectors, and c_1 and c_2 are arbitrary constants. The eigenvalues are given by : \lambda_ = \pm \frac \sqrt . If we write the difference between \omega_p and \omega_n as \Delta \omega = \omega_p - \omega_n, and replace \omega_p with \omega_n everywhere where the difference is not important, we get : \lambda_ = \pm \sqrt . If , \Delta \omega, < \frac, then the eigenvalues are real and exactly one is positive, which leads to
exponential growth Exponential growth is a process that increases quantity over time. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a q ...
for A(t) and B(t). This is the condition for parametric resonance, with the growth rate given by the positive eigenvalue \lambda = \sqrt. Note, however, that this growth rate corresponds to the amplitude of the transformed variable q(t), whereas the amplitude of the untransformed variable x(t) = q(t) e^ can either grow or decay depending on whether \lambda t - D(t) is increasing or decreasing.


Intuitive derivation of parametric excitation

The above derivation may seem like a mathematical sleight-of-hand, so it may be helpful to give an intuitive derivation. The q equation may be written in the form :\frac + \omega_^ q = -\omega_^ f(t) q which represents a simple harmonic oscillator (or, alternatively, a
bandpass filter A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range. Description In electronics and signal processing, a filter is usually a two-port ...
) being driven by a signal -\omega_^ f(t) q that is proportional to its response q(t). Assume that q(t) = A \cos (\omega_ t) already has an oscillation at frequency \omega_ and that the pumping f(t) = f_ \sin (2\omega_t) has double the frequency and a small amplitude f_ \ll 1. Applying a
trigonometric identity In trigonometry, trigonometric identities are Equality (mathematics), equalities that involve trigonometric functions and are true for every value of the occurring Variable (mathematics), variables for which both sides of the equality are defined. ...
for products of sinusoids, their product q(t)f(t) produces two driving signals, one at frequency \omega_ and the other at frequency 3 \omega_. :f(t)q(t) = \frac A \big \sin (\omega_ t) + \sin (3\omega_ t) \big/math> Being off-resonance, the 3\omega_ signal is attenuated and can be neglected initially. By contrast, the \omega_ signal is on resonance, serves to amplify q(t), and is proportional to the amplitude A. Hence, the amplitude of q(t) grows exponentially unless it is initially zero. Expressed in Fourier space, the multiplication f(t)q(t) is a convolution of their Fourier transforms \tilde(\omega) and \tilde(\omega). The positive feedback arises because the +2\omega_ component of f(t) converts the -\omega_ component of q(t) into a driving signal at +\omega_, and vice versa (reverse the signs). This explains why the pumping frequency must be near 2\omega_, twice the natural frequency of the oscillator. Pumping at a grossly different frequency would not couple (i.e., provide mutual positive feedback) between the -\omega_ and +\omega_ components of q(t).


Parametric resonance

Parametric resonance is the parametrical
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
phenomenon A phenomenon ( : phenomena) is an observable event. The term came into its modern philosophical usage through Immanuel Kant, who contrasted it with the noumenon, which ''cannot'' be directly observed. Kant was heavily influenced by Gottfried W ...
of mechanical perturbation and
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
at certain frequencies (and the associated
harmonic A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', the ...
s). This effect is different from regular resonance because it exhibits the
instability In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be mar ...
phenomenon. Parametric resonance occurs in a mechanical system when a system is parametrically excited and oscillates at one of its resonant frequencies. Parametric resonance takes place when the external excitation frequency equals twice the natural frequency of the system. Parametric excitation differs from forcing since the action appears as a time varying modification on a system parameter. The classical example of parametric resonance is that of the vertically forced pendulum. For small amplitudes and by linearising, the stability of the periodic solution is given by Mathieu's equation: :\ddot + (a + B \cos t)u =0 where u is some perturbation from the periodic solution. Here the B\ \cos(t) term acts as an ‘energy’ source and is said to parametrically excite the system. The Mathieu equation describes many other physical systems to a sinusoidal parametric excitation such as an LC Circuit where the capacitor plates move sinusoidally.


Parametric amplifiers


Introduction

A parametric amplifier is implemented as a mixer. The mixer's gain shows up in the output as amplifier gain. The input weak signal is mixed with a strong local oscillator signal, and the resultant strong output is used in the ensuing receiver stages. Parametric amplifiers also operate by changing a parameter of the amplifier. Intuitively, this can be understood as follows, for a variable capacitor-based amplifier. Charge Q in a capacitor obeys: :Q = C \times V
therefore the voltage across is :V = Q/C. Knowing the above, if a capacitor is charged until its voltage equals the sampled voltage of an incoming weak signal, and if the capacitor's capacitance is then reduced (say, by manually moving the plates further apart), then the voltage across the capacitor will increase. In this way, the voltage of the weak signal is amplified. If the capacitor is a
varicap diode In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction. Applications Va ...
, then "moving the plates" can be done simply by applying time-varying DC voltage to the varicap diode. This driving voltage usually comes from another oscillator—sometimes called a "pump". The resulting output signal contains frequencies that are the sum and difference of the input signal (f1) and the pump signal (f2): (f1 + f2) and (f1 − f2). A practical parametric oscillator needs the following connections: one for the "common" or "
ground Ground may refer to: Geology * Land, the surface of the Earth not covered by water * Soil, a mixture of clay, sand and organic matter present on the surface of the Earth Electricity * Ground (electricity), the reference point in an electrical c ...
", one to feed the pump, one to retrieve the output, and maybe a fourth one for biasing. A parametric amplifier needs a fifth port to input the signal being amplified. Since a varactor diode has only two connections, it can only be a part of an LC network with four
eigenvector In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
s with nodes at the connections. This can be implemented as a
transimpedance amplifier In electronics, a transimpedance amplifier (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multipli ...
, a traveling-wave amplifier or by means of a
circulator A circulator is a passive, non-reciprocal three- or four-port device that only allows a microwave or radio-frequency signal to exit through the port directly after the one it entered. Optical circulators have similar behavior. Ports are where an ...
.


Mathematical equation

The parametric oscillator equation can be extended by adding an external driving force E(t): :\frac + \beta(t) \frac + \omega^(t) x = E(t). We assume that the damping D is sufficiently strong that, in the absence of the driving force E, the amplitude of the parametric oscillations does not diverge, i.e., that \alpha t < D. In this situation, the parametric pumping acts to lower the effective damping in the system. For illustration, let the damping be constant \beta(t) = \omega_ b and assume that the external driving force is at the mean resonance frequency \omega_, i.e., E(t) = E_ \sin \omega_ t. The equation becomes :\frac + b \omega_ \frac + \omega_^ \left + h_ \sin 2\omega_ t \rightx = E_ \sin \omega_ t whose solution is approximately :x(t) = \frac \cos \omega_ t. As h_ approaches the threshold 2b, the amplitude diverges. When h_0 \geq 2b, the system enters parametric resonance and the amplitude begins to grow exponentially, even in the absence of a driving force E(t).


Advantages

#It is highly sensitive #low noise level amplifier for ultra high frequency and microwave radio signal


Other relevant mathematical results

If the parameters of any second-order linear differential equation are varied periodically, Floquet analysis shows that the solutions must vary either sinusoidally or exponentially. The q equation above with periodically varying f(t) is an example of a Hill equation. If f(t) is a simple sinusoid, the equation is called a
Mathieu equation In mathematics, Mathieu functions, sometimes called angular Mathieu functions, are solutions of Mathieu's differential equation : \frac + (a - 2q\cos(2x))y = 0, where a and q are parameters. They were first introduced by Émile Léonard Mathieu, ...
.


See also

*
Harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its Mechanical equilibrium, equilibrium position, experiences a restoring force ''F'' Proportionality (mathematics), proportional to the displacement ''x'': \v ...
*
Mathieu equation In mathematics, Mathieu functions, sometimes called angular Mathieu functions, are solutions of Mathieu's differential equation : \frac + (a - 2q\cos(2x))y = 0, where a and q are parameters. They were first introduced by Émile Léonard Mathieu, ...
*
Optical parametric amplifier An optical parametric amplifier, abbreviated OPA, is a laser light source that emits light of variable wavelengths by an optical parametric amplifier, parametric amplification process. It is essentially the same as an optical parametric oscillator, ...
*
Optical parametric oscillator An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave (called "pump") with frequency \omega_p into two output waves of lower frequency (\omega_s, \omega_i) by means ...


References


Further reading

*Kühn L. (1914) ''Elektrotech. Z.'', 35, 816-819. *{{cite journal, last1=Mumford, first1=WW, year=1960, title=Some Notes on the History of Parametric Transducers, journal=Proceedings of the Institute of Radio Engineers, volume=48, issue=5, pages=848–853, doi=10.1109/jrproc.1960.287620, s2cid=51646108 *Pungs L. DRGM Nr. 588 822 (24 October 1913); DRP Nr. 281440 (1913); ''Elektrotech. Z.'', 44, 78-81 (1923?); ''Proc. IRE'', 49, 378 (1961). *Elmer, Franz-Josef, "
Parametric Resonance Pendulum Lab University of Basel
'". unibas.ch, July 20, 1998. *Cooper, Jeffery, "
Parametric Resonance in Wave Equations with a Time-Periodic Potential
'". SIAM Journal on Mathematical Analysis, Volume 31, Number 4, pp. 821–835. Society for Industrial and Applied Mathematics, 2000. *"

'". phys.cmu.edu (Demonstration of physical mechanics or classical mechanics. Resonance oscillations set up in a simple pendulum via periodically varying pendulum length.) *Mumford, W. W., '
Some notes on the history of parametric transducers
'". Proceedings of the IRE, Volume 98, Number 5, pp. 848–853. Institute of Electrical and Electronics Engineers, May 1960.


External links


Tim's Autoparametric Resonance
— a video by
Tim Rowett Timothy Quiller Rowett (born 12 July 1942) is a British YouTube personality and renowned toy collector, known for presenting videos about toys, optical illusions, novelties and puzzles on the YouTube channel ''Grand Illusions''. Rowett, known ...
showing how autoparametric resonance appears in a pendulum made with a spring. Amplifiers Dynamical systems Electronic oscillators Ordinary differential equations