HOME

TheInfoList



OR:

The parallel parking problem is a
motion planning Motion planning, also path planning (also known as the navigation problem or the piano mover's problem) is a computational problem to find a sequence of valid configurations that moves the object from the source to destination. The term is used ...
problem in
control theory Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a ...
and
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects ...
to determine the path a car must take to parallel park into a parking space. The front wheels of a car are permitted to turn, but the rear wheels must stay aligned. When a car is initially adjacent to a parking space, to move into the space it would need to move in a direction perpendicular to the allowed path of motion of the rear wheels. The admissible motions of the car in its configuration space are an example of a
nonholonomic system A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, ...
.


See also

* Automatic parking *
Bicycle and motorcycle dynamics Bicycle and motorcycle dynamics is the science of the Motion (physics), motion of bicycles and motorcycles and their components, due to the forces acting on them. Multibody dynamics, Dynamics falls under a branch of physics known as classical m ...
* Falling cat problem *
Moving sofa problem In mathematics, the moving sofa problem or sofa problem is a two-dimensional idealisation of real-life furniture-moving problems and asks for the rigid two-dimensional shape of largest area that can be maneuvered through an L-shaped planar region ...


References

* . * . Control theory {{applied-math-stub