Pain Receptor
   HOME

TheInfoList



OR:

A nociceptor ("pain receptor" from Latin ''nocere'' 'to harm or hurt') is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, so the threat can be mitigated; this process is called
nociception Nociception (also nocioception, from Latin ''nocere'' 'to harm or hurt') is the sensory nervous system's process of encoding noxious stimuli. It deals with a series of events and processes required for an organism to receive a painful stimulus, co ...
.


History

Nociceptors were discovered by
Charles Scott Sherrington Sir Charles Scott Sherrington (27 November 1857 – 4 March 1952) was an eminent English neurophysiologist. His experimental research established many aspects of contemporary neuroscience, including the concept of the spinal reflex as a system ...
in 1906. In earlier centuries, scientists believed that animals were like mechanical devices that transformed the energy of sensory stimuli into motor responses. Sherrington used many different experiments to demonstrate that different types of stimulation to an
afferent nerve fiber Afferent nerve fibers are the axons (nerve fibers) carried by a sensory nerve that relay sensory information from sensory receptors to regions of the brain. Afferent projections ''arrive'' at a particular brain region. Efferent nerve fibers a ...
's receptive field led to different responses. Some intense stimuli trigger reflex
withdrawal Withdrawal means "an act of taking out" and may refer to: * Anchoresis (withdrawal from the world for religious or ethical reasons) * '' Coitus interruptus'' (the withdrawal method) * Drug withdrawal * Social withdrawal * Taking of money from ...
, certain autonomic responses, and
pain Pain is a distressing feeling often caused by intense or damaging stimuli. The International Association for the Study of Pain defines pain as "an unpleasant sensory and emotional experience associated with, or resembling that associated with, ...
. The specific receptors for these intense stimuli were called nociceptors.


Location

In mammals, nociceptors are found in any area of the body that can sense noxious stimuli. External nociceptors are found in tissue such as the skin ( cutaneous nociceptors), the corneas, and the
mucosa A mucous membrane or mucosa is a membrane that lines various cavities in the body of an organism and covers the surface of internal organs. It consists of one or more layers of epithelial cells overlying a layer of loose connective tissue. It is ...
. Internal nociceptors are found in a variety of organs, such as the
muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
s, the joints, the bladder, the visceral organs, and the digestive tract. The cell bodies of these neurons are located in either the dorsal root ganglia or the trigeminal ganglia. The trigeminal ganglia are specialized nerves for the face, whereas the dorsal root ganglia are associated with the rest of the body. The axons extend into the peripheral nervous system and terminate in branches to form receptive fields.


Development

Nociceptors develop from neural-crest stem cells. The neural crest is responsible for a large part of early development in vertebrates. It is specifically responsible for development of the peripheral nervous system (PNS). The neural-crest stem cells split from the neural tube as it closes, and nociceptors grow from the dorsal part of this neural-crest tissue. They form late during neurogenesis. Earlier forming cells from this region can become non-pain sensing receptors, either proprioceptors or low-threshold
mechanoreceptors A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are innervated by sensory neurons that convert mechanical pressure into electrical signals that, in animals, a ...
. All neurons derived from the neural crest, including embryonic nociceptors, express the TrkA, which is a receptor to
nerve growth factor Nerve growth factor (NGF) is a neurotrophic factor and neuropeptide primarily involved in the regulation of growth, maintenance, proliferation, and survival of certain target neurons. It is perhaps the prototypical growth factor, in that it was on ...
(NGF). However, transcription factors that determine the type of nociceptor remain unclear. Following sensory neurogenesis, differentiation occurs, and two types of nociceptors are formed. They are classified as either peptidergic or nonpeptidergic nociceptors, each of which express a distinct repertoire of ion channels and receptors. Their specializations allow the receptors to innervate different central and peripheral targets. This differentiation occurs in both perinatal and postnatal periods. The nonpeptidergic nociceptors switch off the tropomyosin receptor kinase A or TrkA and begin expressing Ret, which is a transmembrane signaling component that allows the expression of glial cell line-derived neurotrophic factor (GDNF). This transition is assisted by Runx1 which is vital in the development of nonpeptidergic nociceptors. On the contrary, the peptidergic nociceptors continue to use TrkA, and they express a completely different type of growth factor. There currently is a lot of research about the differences between nociceptors.


Types and functions

The peripheral terminal of the mature nociceptor is where the noxious stimuli are detected and transduced into electrical energy. When the electrical energy reaches a threshold value, an action potential is induced and driven towards the central nervous system (CNS). This leads to the train of events that allows for the conscious awareness of pain. The sensory specificity of nociceptors is established by the high threshold only to particular features of stimuli. Only when the high threshold has been reached by either chemical, thermal, or mechanical environments are the nociceptors triggered. The majority of nociceptors are classified by which of the environmental modalities they respond to. Some nociceptors respond to more than one of these modalities and are consequently designated polymodal. Other nociceptors respond to none of these modalities (although they may respond to stimulation under conditions of inflammation) and are referred to as sleeping or silent. Nociceptors have two different types of axons. The first are the Aδ fiber axons. They are myelinated and can allow an action potential to travel at a rate of about 20 meters/second towards the CNS. The other type is the more slowly conducting C fiber axons. These only conduct at speeds of around 2 meters/second. This is due to the light or non-myelination of the axon. As a result, pain comes in two phases. The first phase is mediated by the fast-conducting Aδ fibers and the second part due to (Polymodal) C fibers. The pain associated with the Aδ fibers can be associated to an initial extremely sharp pain. The second phase is a more prolonged and slightly less intense feeling of pain as a result of the acute damage. If there is massive or prolonged input to a C fiber, there is a progressive build up in the spinal cord dorsal horn; this phenomenon is similar to tetanus in muscles but is called
wind-up Wind-up or windup may refer to: * Windup, a pitching position in baseball * "Wind Up", a 1971 song from ''Aqualung'' (Jethro Tull album) * "Wind Up", a 1997 song by Foo Fighters from ''The Colour and the Shape'' * "Wind Up", a 2001 song by Thursda ...
. If wind-up occurs there is a probability of increased sensitivity to pain.


Thermal

Thermal nociceptors are activated by noxious heat or cold at various temperatures. There are specific nociceptor transducers that are responsible for how and if the specific nerve ending responds to the thermal stimulus. The first to be discovered was TRPV1, and it has a threshold that coincides with the heat pain temperature of 43 °C. Other temperature in the warm–hot range is mediated by more than one TRP channel. Each of these channels express a particular C-terminal domain that corresponds to the warm–hot sensitivity. The interactions between all these channels and how the temperature level is determined to be above the pain threshold are unknown at this time. The cool stimuli are sensed by TRPM8 channels. Its C-terminal domain differs from the heat sensitive TRPs. Although this channel corresponds to cool stimuli, it is still unknown whether it also contributes in the detection of intense cold. An interesting finding related to cold stimuli is that tactile sensibility and motor function deteriorate while pain perception persists.


Mechanical

Mechanical nociceptors respond to excess pressure or mechanical deformation. They also respond to incisions that break the skin surface. The reaction to the stimulus is processed as pain by the cortex, just like chemical and thermal responses. These mechanical nociceptors frequently have polymodal characteristics. So it is possible that some of the transducers for thermal stimuli are the same for mechanical stimuli. The same is true for chemical stimuli, since TRPA1 appears to detect both mechanical and chemical changes. Some mechanical stimuli can cause release of intermediate chemicals, such as
ATP ATP may refer to: Companies and organizations * Association of Tennis Professionals, men's professional tennis governing body * American Technical Publishers, employee-owned publishing company * ', a Danish pension * Armenia Tree Project, non ...
, which can be detected by P2 purinergic receptors, or
nerve growth factor Nerve growth factor (NGF) is a neurotrophic factor and neuropeptide primarily involved in the regulation of growth, maintenance, proliferation, and survival of certain target neurons. It is perhaps the prototypical growth factor, in that it was on ...
, which can be detected by Tropomyosin receptor kinase A (TrkA).


Chemical

Chemical nociceptors have TRP channels that respond to a wide variety of spices. The one that sees the most response and is very widely tested is capsaicin. Other chemical stimulants are environmental irritants like
acrolein Acrolein (systematic name: propenal) is the simplest unsaturated aldehyde. It is a colorless liquid with a piercing, acrid smell. The smell of burnt fat (as when cooking oil is heated to its smoke point) is caused by glycerol in the burning fa ...
, a World War I chemical weapon and a component of cigarette smoke. Apart from these external stimulants, chemical nociceptors have the capacity to detect endogenous ligands, and certain fatty acid amines that arise from changes in internal tissues. Like in thermal nociceptors, TRPV1 can detect chemicals like capsaicin and spider toxins and acids. Acid-sensing ion channels (ASIC) also detect acidity.


Sleeping/silent

Although each nociceptor can have a variety of possible threshold levels, some do not respond at all to chemical, thermal or mechanical stimuli unless injury actually has occurred. These are typically referred to as silent or sleeping nociceptors since their response comes only on the onset of inflammation to the surrounding tissue.


Polymodal

Many neurons perform only a single function; therefore, neurons that perform these functions in combination are given the classification "polymodal."


Pathway


Ascending

Afferent Afferent may refer to: Anatomical structures Meaning "conveying towards a center": * Afferent arterioles, blood vessels that supply the nephrons * Afferent lymphatic vessels, lymph vessels that carry lymph to a lymph node * Afferent nerve fiber ...
nociceptive fibers (those that send information ''to'', rather than ''from'' the brain) travel back to the spinal cord where they form synapses in its dorsal horn. This nociceptive fiber (located in the periphery) is a first order neuron. The
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
in the dorsal horn are divided into physiologically distinct layers called laminae. Different fiber types form
synapses In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
in different layers, and use either
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
or substance P as the neurotransmitter. Aδ fibers form synapses in laminae I and V, C fibers connect with neurons in lamina II, Aβ fibers connect with lamina I, III, & V. After reaching the specific lamina within the spinal cord, the first order nociceptive project to second order neurons that cross the midline at the anterior white commissure. The second order neurons then send their information via two pathways to the thalamus: the dorsal column medial-lemniscal system and the
anterolateral system The spinothalamic tract is a part of the anterolateral system or the ventrolateral system, a sensory pathway to the thalamus. From the ventral posterolateral nucleus in the thalamus, sensory information is relayed upward to the somatosensory cor ...
. The former is reserved more for regular non-painful sensation, while the latter is reserved for pain sensation. Upon reaching the thalamus, the information is processed in the ventral posterior nucleus and sent to the cerebral cortex in the brain via fibers in the posterior limb of the internal capsule.


Descending

As there is an ascending pathway to the brain that initiates the conscious realization of pain, there also is a descending pathway which modulates pain sensation. The brain can request the release of specific
hormones A hormone (from the Ancient Greek, Greek participle , "setting in motion") is a class of cell signaling, signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and beh ...
or chemicals that can have analgesic effects which can reduce or inhibit pain sensation. The area of the brain that stimulates the release of these hormones is the hypothalamus. This effect of descending inhibition can be shown by electrically stimulating the periaqueductal grey area of the midbrain or the periventricular nucleus. They both in turn project to other areas involved in pain regulation, such as the nucleus raphe magnus which also receives similar afferents from the
nucleus reticularis paragigantocellularis Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
(NPG). In turn the nucleus raphe magnus projects to the substantia gelatinosa region of the dorsal horn and mediates the sensation of spinothalamic inputs. This is done first by the nucleus raphe magnus sending
serotonin Serotonin () or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter. Its biological function is complex and multifaceted, modulating mood, cognition, reward, learning, memory, and numerous physiological processes such as vomiting and vas ...
ergic neurons to neurons in the dorsal cord, that in turn secrete enkephalin to the interneurons that carry pain perception. Enkephalin functions by binding opioid receptors to cause inhibition of the post-synaptic neuron, thus inhibiting pain. The periaqueductal grey also contains
opioid receptors Opioid receptors are a group of inhibitory G protein-coupled receptors with opioids as ligands. The endogenous opioids are dynorphins, enkephalins, endorphins, endomorphins and nociceptin. The opioid receptors are ~40% identical to somatostatin r ...
which explains one of the mechanisms by which opioids such as morphine and diacetylmorphine exhibit an analgesic effect.


Sensitivity

Nociceptor neuron sensitivity is modulated by a large variety of mediators in the extracellular space. Peripheral sensitization represents a form of functional plasticity of the nociceptor. The nociceptor can change from being simply a noxious stimulus detector to a detector of non-noxious stimuli. The result is that low intensity stimuli from regular activity, initiates a painful sensation. This is commonly known as hyperalgesia. Inflammation is one common cause that results in the sensitization of nociceptors. Normally hyperalgesia ceases when inflammation goes down, however, sometimes genetic defects and/or repeated injury can result in allodynia: a completely non-noxious stimulus like light touch causes extreme pain. Allodynia can also be caused when a nociceptor is damaged in the peripheral nerves. This can result in deafferentation, which means the development of different central processes from the surviving afferent nerve. With this situation, surviving dorsal root axons of the nociceptors can make contact with the spinal cord, thus changing the normal input.


Other animals

Nociception has been documented in non-mammalian animals, including fish and a wide range of invertebrates, including leeches,
nematode The nematodes ( or grc-gre, Νηματώδη; la, Nematoda) or roundworms constitute the phylum Nematoda (also called Nemathelminthes), with plant-Parasitism, parasitic nematodes also known as eelworms. They are a diverse animal phylum inhab ...
worms, sea slugs, and larval fruit flies. Although these neurons may have different pathways and relationships to the central nervous system than mammalian nociceptors, nociceptive neurons in non-mammals often fire in response to similar stimuli as mammals, such as high temperature (40 degrees C or more), low pH, capsaicin, and tissue damage.


Terminology

Due to a historical misunderstanding of pain, nociceptors are also inappropriately referred to as ''pain receptors''. Although all pain is real, psychological factors can strongly influence subjective intensity.


See also

* Capsaicin and its mechanism of action in nociceptors. * Piperine from black pepper * TRPC ion channel


References

{{pain Sensory receptors Nociception Receptor cells