History
The PUP protocol was created in roughly the same time frame as the earliest parts of the development of TCP/IP for the Internet and also the same time period as the early Ethernet local area network at PARC. The fundamental design of the PUP suite was substantially complete by 1974. In the 1980s Xerox used PUP as the base for the Xerox Network Systems (XNS) protocol suite; some of the protocols in the XNS suite (such as the Internetwork Datagram Protocol) were lightly modified versions of the ones in the PUP suite, but others are quite different, reflecting the experience gained with PUP and IP.Basic internetwork protocol
The main internetwork layer protocol is PUP, which roughly corresponds to the Internet Protocol (IP) layer in TCP/IP. A full PUP network address consists of an 8-bit network number, an 8-bit host number, and a 16-bit socket number. The network number has a particular special value which means 'this network', for use by hosts which do not (yet) know their network number. Unlike TCP/IP, socket fields are part of the full network address in the PUP header, so that upper-layer protocols did not need to implement their own demultiplexing; PUP also supplies packet types (again, unlike IP). Also, an optional 2-byte checksum covers the entire packet. PUP packets are up to 554 bytes long (including the 20 byte PUP header), and the checksum. This is a smaller packet size than IP, which requires all hosts to support a minimum of 576 bytes (but allows packets of up to 65K bytes, if the hosts support them); individual PUP host pairs on a particular network might use larger packets, but no PUP router is required to handle them. Larger packets can be fragmented. A protocol named the ''Gateway Information Protocol'' (an ancestor ofTransport layer protocols
To establish a transport connection, two protocols came into play. The first, the Rendezvous and Termination Protocol (RTP), which was used to initiate communication between two entities, as well as manage and terminate the connection. The second was the primary transport layer protocol, Byte Stream Protocol (BSP), which was analogous toApplication protocols
PUP supported a large number of applications. Some of them, such as Telnet and File Transfer Protocol, were basically the same protocols as used on the ARPANET (much as occurred with the TCP/IP suite). Others were novel, including protocols for printer spooling, copying disk packs, page-level remote access to file servers, name lookup, remote management, etc. (although some of these capabilities had been seen before, e.g. the ARPANET already made heavy use of remote management for controlling the Interface Message Processors which made it up).Impact
PuP showed that internetworking ideas were feasible, influenced the design work on TCP/IP, and laid a foundation for the later XNS protocols. At one point, Vint Cerf and Bob Kahn organized meetings at Stanford, and Xerox Researchers Bob Metcalfe and John Shoch attended. However, the Xerox attendees were told by a Xerox lawyer that they could not talk about PuP. During design discussions, the Xerox attendees kept pointing out flaws in the ideas that were suggested, until one of the Stanford researchers blurted out, "You guys have already done this, haven’t you?" The biggest impact of PuP was probably as a key component of the office of the future model first demonstrated at Xerox PARC; that demonstration would not have been anything like as powerful as it was without all the capabilities that a working internetwork provided. The Gateway Information Protocol's descendant,See also
* EFTPReferences
* Edward A. Taft, Robert M. Metcalfe,Further reading
* {{cite journal , author1= David R. Boggs , author-link= David R. Boggs , author2= John F. Shoch , author2-link= John F. Shoch , author3= Edward A. Taft , author4= Robert M. Metcalfe , author4-link= Robert M. Metcalfe , title= Pup: An Internetwork Architecture , journal= IEEE Transactions on Communications , volume=28 , issue=4 , pages=612–624 , date= April 1980 , doi= 10.1109/TCOM.1980.1094684 * Michael A. Hiltzik, Dealers of Lightning: Xerox PARC and the Dawn of the Computer Age (HarperBusiness, New York, 1999), pp. 291–293 Packets (information technology)