HOME

TheInfoList



OR:

In
electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outco ...
, overpotential is the
potential Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple re ...
difference (
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
) between a
half-reaction A half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. ...
's thermodynamically determined reduction potential and the potential at which the
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
event is experimentally observed. The term is directly related to a cell's ''voltage efficiency''. In an
electrolytic cell An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would not otherwise occur. The external energy source is a voltage applied between the cell′s two electro ...
the existence of overpotential implies that the cell requires more energy than thermodynamically expected to drive a reaction. In a
galvanic cell A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous Oxidation-Reduction reactions. A common apparatus ...
the existence of overpotential means less energy is recovered than
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws o ...
predicts. In each case the extra/missing energy is lost as
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
. The quantity of overpotential is specific to each cell design and varies across cells and operational conditions, even for the same reaction. Overpotential is experimentally determined by measuring the potential at which a given
current density In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional ar ...
(typically small) is achieved.


Thermodynamics

The four possible polarities of overpotentials are listed below. * An electrolytic cell's
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
is more positive, using more energy than thermodynamics require. * An electrolytic cell's
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
is more negative, using more energy than thermodynamics require. * A galvanic cell's anode is less negative, supplying less energy than thermodynamically possible. * A galvanic cell's cathode is less positive, supplying less energy than thermodynamically possible. The overpotential increases with growing
current density In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional ar ...
(or rate), as described by the
Tafel equation The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. Th ...
. An electrochemical reaction is a combination of two half-cells and multiple elementary steps. Each step is associated with multiple forms of overpotential. The overall overpotential is the summation of many individual losses. ''Voltage efficiency'' describes the fraction of energy lost through overpotential. For an ''electrolytic'' cell this is the ratio of a cell's thermodynamic potential divided by the cell's experimental potential converted to a percentile. For a ''galvanic'' cell it is the ratio of a cell's experimental potential divided by the cell's thermodynamic potential converted to a percentile. Voltage efficiency should not be confused with
Faraday efficiency Faraday efficiency (also called ''faradaic efficiency'', ''faradaic yield'', ''coulombic efficiency'' or ''current efficiency'') describes the efficiency with which charge (electrons) is transferred in a system facilitating an electrochemical react ...
. Both terms refer to a mode through which electrochemical systems can lose energy. Energy can be expressed as the product of potential, current and time (
joule The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applied ...
=
volt The volt (symbol: V) is the unit of electric potential, electric potential difference ( voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827). Def ...
×
Ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to ele ...
×
second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds e ...
). Losses in the potential term through overpotentials are described by voltage efficiency. Losses in the current term through misdirected electrons are described by Faraday efficiency.


Varieties

Overpotential can be divided into many different subcategories that are not all well defined. For example, "polarization overpotential" can refer to the electrode polarization and the
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
found in forward and reverse peaks of
cyclic voltammetry Cyclic voltammetry (CV) is a type of potentiodynamic electrochemical measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is re ...
. A likely reason for the lack of strict definitions is that it is difficult to determine how much of a measured overpotential is derived from a specific source. Overpotentials can be grouped into three categories: activation, concentration, and resistance.


Activation overpotential

The activation overpotential is the potential difference above the equilibrium value required to produce a current that depends on the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
of the redox event. While ambiguous, "activation overpotential" often refers exclusively to the activation energy necessary to transfer an electron from an electrode to an anolyte. This sort of overpotential can also be called "electron transfer overpotential" and is a component of "polarization overpotential", a phenomenon observed in
cyclic voltammetry Cyclic voltammetry (CV) is a type of potentiodynamic electrochemical measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is re ...
and partially described by the Cottrell equation.


Reaction overpotential

Reaction overpotential is an activation overpotential that specifically relates to
chemical reactions A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking ...
that precede electron transfer. Reaction overpotential can be reduced or eliminated with the use of
electrocatalyst An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst ...
s. The electrochemical reaction rate and related
current density In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional ar ...
is dictated by the kinetics of the electrocatalyst and substrate concentration. The
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Platin ...
electrode common to much of
electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outco ...
is electrocatalytically involved in many reactions. For example,
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxi ...
is oxidized and protons are reduced readily at the platinum surface of a
standard hydrogen electrode The standard hydrogen electrode (abbreviated SHE), is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. Its absolute electrode potential is estimated to be at 25 °C, but to form a basis ...
in
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be ...
. Substituting an electrocatalytically inert
glassy carbon Glass-like carbon, often called glassy carbon or vitreous carbon, is a non-graphitizing, or nongraphitizable, carbon which combines glassy and ceramic properties with those of graphite. The most important properties are high temperature resis ...
electrode for the platinum electrode produces irreversible reduction and oxidation peaks with large overpotentials.


Concentration overpotential

Concentration overpotential spans a variety of phenomena that involve the depletion of charge-carriers at the electrode surface. Bubble overpotential is a specific form of concentration overpotential in which the concentration of charge-carriers is depleted by the formation of a physical bubble. The "diffusion overpotential" can refer to a concentration overpotential created by slow diffusion rates as well as "polarization overpotential", whose overpotential is derived mostly from activation overpotential but whose peak current is limited by diffusion of analyte. The potential difference is caused by differences in the concentration of charge-carriers between bulk solution and the electrode surface. It occurs when electrochemical reaction is sufficiently rapid to lower the surface concentration of the charge-carriers below that of bulk solution. The rate of reaction is then dependent on the ability of the charge-carriers to reach the electrode surface.


Bubble overpotential

Bubble overpotential is a specific form of concentration overpotential and is due to the evolution of gas at either the anode or cathode. This reduces the effective area for current and increases the local current density. An example is the electrolysis of an aqueous sodium chloride solution—although
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
should be produced at the anode based on its potential, bubble overpotential causes
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine ...
to be produced instead, which allows the easy industrial production of chlorine and
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and a ...
by electrolysis.


Resistance overpotential

Resistance overpotentials are those tied to a cell design. These include "junction overpotentials" that occur at electrode surfaces and interfaces like electrolyte membranes. They can also include aspects of electrolyte diffusion, surface polarization (
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized ar ...
) and other sources of counter
electromotive force In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal or ) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transd ...
s.


See also

*
Electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from na ...
* Electrosynthesis


References

{{Reflist Electrochemical concepts Electrochemical potentials