HOME

TheInfoList



OR:

An overhead valve (OHV) engine, sometimes called a ''pushrod engine'', is a piston engine whose valves are located in the cylinder head above the combustion chamber. This contrasts with earlier flathead engines, where the valves were located below the combustion chamber in the
engine block In an internal combustion engine, the engine block is the structure which contains the cylinders and other components. In an early automotive engine, the engine block consisted of just the cylinder block, to which a separate crankcase was attac ...
. Although an
overhead camshaft An overhead camshaft (OHC) engine is a piston engine where the camshaft is located in the cylinder head above the combustion chamber. This contrasts with earlier overhead valve engines (OHV), where the camshaft is located below the combustion cha ...
(OHC) engine also has overhead valves, the common usage of the term "overhead valve engine" is limited to engines where the camshaft is located in the engine block. In these traditional OHV engines, the motion of the camshaft is transferred using pushrods (hence the term "pushrod engine") and
rocker arm In the context of an internal combustion engine, a rocker arm is a valvetrain component that typically transfers the motion of a pushrod to the corresponding intake/exhaust valve. Rocker arms in automobiles are typically made from stamped steel ...
s to operate the valves at the top of the engine. Some early intake-over-exhaust engines used a hybrid design combining elements of both side-valves and overhead valves.


History


Predecessors

The first internal combustion engines were based on steam engines and therefore used slide valves. This was the case for the first Otto engine, which was first successfully run in 1876. As internal combustion engines began to develop separately to steam engines,
poppet valve A poppet valve (also called mushroom valve) is a valve typically used to control the timing and quantity of gas or vapor flow into an engine. It consists of a hole or open-ended chamber, usually round or oval in cross-section, and a plug, usua ...
s became increasingly common. Beginning with the 1885
Daimler Reitwagen The Daimler ''Reitwagen'' ("riding car") or ''Einspur'' ("single track") was a motor vehicle made by Gottlieb Daimler and Wilhelm Maybach in 1885. It is widely recognized as the first motorcycle. Daimler is often called "the father of the mot ...
, several cars and motorcycles used inlet valve(s) located in the cylinder head, however these valves were vacuum-actuated ("atmospheric") rather than driven by a camshaft as with typical OHV engines. The exhaust valve(s) were driven by a camshaft, but were located in the engine block as with side-valve engines. The 1894 Diesel prototype engine used overhead poppet valves actuated by a camshaft, pushrods and rocker arms, therefore becoming one of the first OHV engines. In 1896, U.S. patent 563,140 was taken out by William F. Davis for an OHV engine with liquid coolant used to cool the cylinder head, but no working model was built.


Production OHV engines

In 1898, bicycle manufacturer Walter Lorenzo Marr in the United States built a motorised tricycle powered by a single-cylinder OHV engine. Marr was hired by Buick (then named ''Buick Auto-Vim and Power Company'') from 1899–1902, where the overhead valve engine design was further refined. This engine employed pushrod-actuated rocker arms, which in turn opened poppet valves parallel to the pistons. Marr returned to Buick in 1904 (having built a small quantity of the Marr Auto-Car, with the first known engine to use an overhead camshaft design), the same year that Buick received a patent for an overhead valve engine design. In 1904, the world's first production OHV engine was released in the
Buick Model B The Buick Model B was Buick's first model as an independent company, later becoming part of General Motors in 1908. It was built in Jackson, Michigan. A model B was exhibited in 1905 at the New York Auto Show The New York International Au ...
. The engine was a
flat-twin A flat-twin engine is a two-cylinder internal combustion engine with the cylinders on opposite sides of the crankshaft. The most common type of flat-twin engine is the boxer-twin engine, where both pistons move inwards and outwards at the same ti ...
design with two valves per cylinder. The engine was very successful for Buick, with the company selling 750 such cars in 1905. Several other manufacturers began to produce OHV engines, such as the 1906–1912 Wright Brothers ''Vertical 4-Cylinder Engine''. In 1911, Chevrolet joined Buick in almost exclusive use of OHV engines. However, side-valve engines remained commonplace until the late 1940s, when they began to be phased out for OHV engines.


Overhead camshaft engines

The first overhead camshaft (OHC) engine dates back to 1902, however use of this design was mostly limited to high performance cars for many decades. OHC engines slowly became more common from the 1950s to the 1990s, and by the start of the 21st century, the majority of automotive engines (except for some North American V8 engines) used an OHC design. At the
1994 Indianapolis 500 The 78th Indianapolis 500 was held at the Indianapolis Motor Speedway in Speedway, Indiana on Sunday, May 29, 1994. The race was sanctioned by United States Auto Club (USAC), and was included as race number 4 of 16 of the 1994 PPG IndyCar Worl ...
motor race, Team Penske entered a car powered by the custom-built Mercedes-Benz 500I pushrod engine. Due to a loophole in the rules, the pushrod engine was allowed to use a larger displacement and higher boost pressure, significantly increasing its power output compared to the OHC engines used by other teams. Team Penske qualified in pole position and won the race by a large margin. In the early 21st century, several pushrod V8 engines from General Motors and Chrysler used variable displacement to reduce fuel consumption and exhaust emissions. In 2008, the first production pushrod engine to use variable valve timing was introduced in the Dodge Viper (fourth generation).


Design

OHV engines have several advantages compared with OHC engines: * ''Smaller overall packaging'': The
cam-in-block A cam-in-block engine is where the camshaft is located in the engine block. Types of cam-in-block engines are: * F-Head Engine * Flathead engine * Overhead valve engine (the only type where the valves are above the combustion chamber) * T-head eng ...
design of an OHV engine results in a smaller overall size, compared with an equivalent OHC engine. * ''Using the same cylinder head casting for both cylinder banks:'' A V-type engine design allows both cylinder heads can be mirror images of each other at the front of each cylinder bank. In a V-type OHV engine design it is possible to use same cylinder head casting for both banks, by simply flipping it around for the second bank. General Motors LS-based small-block engine family is a popular example of these kind of OHV V-engines. * ''Simpler camshaft drive system'': OHV engines have a less complex drive system for the camshaft when compared with OHC engines. Most OHC engines drive the camshaft or camshafts using a timing belt, a chain, or multiple chains. These systems require the use of tensioners, which add complexity. In contrast, an OHV engine has the camshaft positioned close to the crankshaft, which may be driven by a much shorter chain or even direct gear connection. However, this is somewhat negated by a more complex valvetrain requiring pushrods. * ''Simpler lubrication system'': The lubrication requirements for OHV cylinder heads are much less, due to the lack of a camshaft and related bearings to lubricate. OHV heads only need lubrication for the rocker arms at the pushrod end,
trunnion A trunnion (from Old French "''trognon''", trunk) is a cylindrical protrusion used as a mounting or pivoting point. First associated with cannons, they are an important military development. Alternatively, a trunnion is a shaft that positions a ...
, and rocker tip. This lubrication to is typically provided through the pushrods themselves rather than a dedicated lubrication system in the head. The reduced lubrication requirements can also mean that a smaller, lower-capacity oil pump is used. Compared with OHC engines, OHV engines have the following disadvantages: * ''Limited engine speeds'': Although OHV engines have simpler drive systems for the camshaft, there are a greater number of moving parts in the valvetrain (i.e. the lifters, pushrods and rockers). Inertia from these valvetrain parts makes OHV engines more susceptible to
valve float Valve float is an adverse condition which can occur at high engine speeds when the poppet valves in an internal combustion engine valvetrain do not properly follow the closure phase of the cam lobe profile. This reduces engine efficiency and perform ...
at high engine speeds (RPM). * ''Constraints on valve quantity and location'': OHC engines often have four valves per cylinder, whereas it is rare for an OHV engine to have more than two valves per cylinder. In OHV engines, the size and shape of the intake ports as well as the position of the valves are limited by the pushrods and the need to accommodate them in the head casting.


References

{{Internal combustion engine Cam-in-block valvetrain configurations Engine valvetrain configurations Motorcycle engines Scottish inventions