HOME

TheInfoList



OR:

Orbital inclination measures the tilt of an object's
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
around a celestial body. It is expressed as the
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
between a
reference plane In celestial mechanics, the plane of reference (or reference plane) is the plane used to define orbital elements (positions). The two main orbital elements that are measured with respect to the plane of reference are the inclination and the longi ...
and the
orbital plane The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) an ...
or
axis An axis (plural ''axes'') is an imaginary line around which an object rotates or is symmetrical. Axis may also refer to: Mathematics * Axis of rotation: see rotation around a fixed axis * Axis (mathematics), a designator for a Cartesian-coordinat ...
of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north
latitude In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pol ...
and 20° south latitude, then its orbital inclination would be 20°.


Orbits

The inclination is one of the six orbital elements describing the shape and orientation of a celestial
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
. It is the
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
between the orbital plane and the
plane of reference In celestial mechanics, the plane of reference (or reference plane) is the plane used to define orbital elements (positions). The two main orbital elements that are measured with respect to the plane of reference are the inclination and the longi ...
, normally stated in degrees. For a satellite orbiting a
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
, the plane of reference is usually the plane containing the planet's equator. For planets in the Solar System, the plane of reference is usually the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers. Therefore, Earth's inclination is, by definition, zero. Inclination can instead be measured with respect to another plane, such as the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
's equator or the
invariable plane The invariable plane of a planetary system, also called Laplace's invariable plane, is the plane passing through its barycenter (center of mass) perpendicular to its angular momentum vector. In the Solar System, about 98% of this effect is contr ...
(the plane that represents the angular momentum of the Solar System, approximately the orbital plane of
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
).


Natural and artificial satellites

The inclination of orbits of
natural Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
or
artificial satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisoto ...
s is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the plane perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°. The convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits (backward). Thus: * An inclination of 0° means the orbiting body has a prograde orbit in the planet's equatorial plane. * An inclination greater than 0° and less than 90° also describes a prograde orbit. * An inclination of 63.4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. * An inclination of exactly 90° is a
polar orbit A polar orbit is one in which a satellite passes above or nearly above both poles of the body being orbited (usually a planet such as the Earth, but possibly another body such as the Moon or Sun) on each revolution. It has an inclination of about ...
, in which the spacecraft passes over the poles of the planet. * An inclination greater than 90° and less than 180° is a retrograde orbit. * An inclination of exactly 180° is a retrograde equatorial orbit. For impact-generated moons of
terrestrial planet A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, ...
s not too far from their star, with a large planet–moon distance, the orbital planes of moons tend to be aligned with the planet's orbit around the star due to tides from the star, but if the planet–moon distance is small, it may be inclined. For
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
s, the orbits of moons tend to be aligned with the giant planet's equator, because these formed in circumplanetary disks. Strictly speaking, this applies only to regular satellites. Captured bodies on distant orbits vary widely in their inclinations, while captured bodies in relatively close orbits tend to have low inclinations owing to tidal effects and perturbations by large regular satellites.


Exoplanets and multiple star systems

The inclination of exoplanets or members of
multiple stars A star system or stellar system is a small number of stars that orbit each other, bound by gravitational attraction. A large group of stars bound by gravitation is generally called a ''star cluster'' or ''galaxy'', although, broadly speaking, ...
is the angle of the plane of the orbit relative to the plane perpendicular to the line of sight from Earth to the object. * An inclination of 0° is a face-on orbit, meaning the plane of the exoplanet's orbit is perpendicular to the line of sight with Earth. * An inclination of 90° is an edge-on orbit, meaning the plane of the exoplanet's orbit is parallel to the line of sight with Earth. Since the word "inclination" is used in exoplanet studies for this line-of-sight inclination, the angle between the planet's orbit and its star's rotational axis is expressed using the term the "spin-orbit angle" or "spin-orbit alignment". In most cases the orientation of the star's rotational axis is unknown. Because the radial-velocity method more easily finds planets with orbits closer to edge-on, most exoplanets found by this method have inclinations between 45° and 135°, although in most cases the inclination is not known. Consequently, most exoplanets found by radial velocity have true masses no more than 40% greater than their
minimum mass In astronomy, minimum mass is the lower-bound calculated mass of observed objects such as planets, stars and binary systems, nebulae, and black holes. Minimum mass is a widely cited statistic for extrasolar planets detected by the radial veloci ...
es. If the orbit is almost face-on, especially for superjovians detected by radial velocity, then those objects may actually be
brown dwarf Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
s or even red dwarfs. One particular example is HD 33636 B, which has true mass 142 MJ, corresponding to an M6V star, while its minimum mass was 9.28 MJ. If the orbit is almost edge-on, then the planet can be seen transiting its star.


Calculation

In astrodynamics, the inclination i can be computed from the orbital momentum vector h (or any vector perpendicular to the
orbital plane The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) an ...
) as i = \arccos \frac where h_z is the z-component of h. Mutual inclination of two orbits may be calculated from their inclinations to another plane using cosine rule for angles.


Observations and theories

Most planetary orbits in the Solar System have relatively small inclinations, both in relation to each other and to the Sun's equator: On the other hand, the
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to ...
s
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest ...
and Eris have inclinations to the ecliptic of 17° and 44° respectively, and the large asteroid
Pallas Pallas may refer to: Astronomy * 2 Pallas asteroid ** Pallas family, a group of asteroids that includes 2 Pallas * Pallas (crater), a crater on Earth's moon Mythology * Pallas (Giant), a son of Uranus and Gaia, killed and flayed by Athena * Pa ...
is inclined at 34°. In 1966, Peter Goldreich published a classic paper on the evolution of the Moon's orbit and on the orbits of other moons in the Solar System. He showed that, for each planet, there is a distance such that moons closer to the planet than that distance maintain an almost constant orbital inclination with respect to the planet's equator (with an orbital precession mostly due to the tidal influence of the planet), whereas moons farther away maintain an almost constant orbital inclination with respect to the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
(with precession due mostly to the tidal influence of the sun). The moons in the first category, with the exception of Neptune's moon Triton, orbit near the equatorial plane. He concluded that these moons formed from equatorial accretion disks. But he found that the Moon, although it was once inside the critical distance from the Earth, never had an equatorial orbit as would be expected from various scenarios for its origin. This is called the lunar inclination problem, to which various solutions have since been proposed.


Other meaning

For planets and other rotating celestial bodies, the angle of the equatorial plane relative to the orbital plane – such as the tilt of the Earth's poles toward or away from the Sun – is sometimes also called inclination, but less ambiguous terms are
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
or obliquity.


See also

* Altitude (astronomy) * Axial parallelism *
Axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
*
Azimuth An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north. Mathematical ...
* Beta angle *
Kepler orbit Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
s *
Kozai effect In celestial mechanics, the Kozai mechanism is a dynamical phenomenon affecting the orbit of a binary system perturbed by a distant third body under certain conditions. It is also known as the von Zeipel-Kozai-Lidov, Lidov–Kozai mechanism, Kozai ...
* Orbital inclination change * Space Shuttle Columbia disaster: Possible emergency procedures


References

{{Portal bar, Physics, Astronomy, Stars, Spaceflight, Outer space, Solar System Orbits