HOME

TheInfoList



OR:

Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields:
discrete optimization Discrete optimization is a branch of optimization in applied mathematics and computer science. Scope As opposed to continuous optimization, some or all of the variables used in a discrete mathematical program are restricted to be discrete varia ...
and
continuous optimization Continuous optimization is a branch of optimization in applied mathematics. As opposed to discrete optimization, the variables used in the objective function are required to be continuous variables—that is, to be chosen from a set of re ...
. Optimization problems of sorts arise in all quantitative disciplines from
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
and
engineering Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more speciali ...
to
operations research Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decis ...
and
economics Economics () is the social science that studies the production, distribution, and consumption of goods and services. Economics focuses on the behaviour and interactions of economic agents and how economies work. Microeconomics anal ...
, and the development of solution methods has been of interest in
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
for centuries. In the more general approach, an
optimization problem In mathematics, computer science and economics, an optimization problem is the problem of finding the ''best'' solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables ...
consists of maximizing or minimizing a
real function In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an interv ...
by systematically choosing
input Input may refer to: Computing * Input (computer science), the act of entering data into a computer or data processing system * Information, any data entered into a computer or data processing system * Input device * Input method * Input port (disa ...
values from within an allowed set and computing the
value Value or values may refer to: Ethics and social * Value (ethics) wherein said concept may be construed as treating actions themselves as abstract objects, associating value to them ** Values (Western philosophy) expands the notion of value beyo ...
of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of
applied mathematics Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathemati ...
. More generally, optimization includes finding "best available" values of some objective function given a defined
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function ** Natural domain of a partial function **Domain of holomorphy of a function * ...
(or input), including a variety of different types of objective functions and different types of domains.


Optimization problems

Optimization problems can be divided into two categories, depending on whether the variables are
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous g ...
or discrete: * An optimization problem with discrete variables is known as a ''
discrete optimization Discrete optimization is a branch of optimization in applied mathematics and computer science. Scope As opposed to continuous optimization, some or all of the variables used in a discrete mathematical program are restricted to be discrete varia ...
'', in which an
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
such as an
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
,
permutation In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or pro ...
or
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
must be found from a
countable set In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numb ...
. * A problem with continuous variables is known as a ''
continuous optimization Continuous optimization is a branch of optimization in applied mathematics. As opposed to discrete optimization, the variables used in the objective function are required to be continuous variables—that is, to be chosen from a set of re ...
'', in which an optimal value from a
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in val ...
must be found. They can include constrained problems and multimodal problems. An optimization problem can be represented in the following way: :''Given:'' a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
from some
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
to the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s :''Sought:'' an element such that for all ("minimization") or such that for all ("maximization"). Such a formulation is called an
optimization problem In mathematics, computer science and economics, an optimization problem is the problem of finding the ''best'' solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables ...
or a mathematical programming problem (a term not directly related to
computer programming Computer programming is the process of performing a particular computation (or more generally, accomplishing a specific computing result), usually by designing and building an executable computer program. Programming involves tasks such as anal ...
, but still in use for example in
linear programming Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is ...
– see
History History (derived ) is the systematic study and the documentation of the human activity. The time period of event before the invention of writing systems is considered prehistory. "History" is an umbrella term comprising past events as well ...
below). Many real-world and theoretical problems may be modeled in this general framework. Since the following is valid :f(\mathbf_)\geq f(\mathbf) \Leftrightarrow -f(\mathbf_)\leq -f(\mathbf), it suffices to solve only minimization problems. However, the opposite perspective of considering only maximization problems would be valid, too. Problems formulated using this technique in the fields of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
may refer to the technique as ''
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
minimization'', speaking of the value of the function as representing the energy of the
system A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and express ...
being modeled. In
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
, it is always necessary to continuously evaluate the quality of a data model by using a cost function where a minimum implies a set of possibly optimal parameters with an optimal (lowest) error. Typically, is some
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of the
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
, often specified by a set of '' constraints'', equalities or inequalities that the members of have to satisfy. The
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function ** Natural domain of a partial function **Domain of holomorphy of a function * ...
of is called the ''search space'' or the ''choice set'', while the elements of are called ''
candidate solution In mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potent ...
s'' or ''feasible solutions''. The function is called, variously, an ''objective function'', a ''
loss function In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cos ...
'' or ''cost function'' (minimization), a ''utility function'' or ''fitness function'' (maximization), or, in certain fields, an ''energy function'' or ''energy
functional Functional may refer to: * Movements in architecture: ** Functionalism (architecture) ** Form follows function * Functional group, combination of atoms within molecules * Medical conditions without currently visible organic basis: ** Functional sy ...
''. A feasible solution that minimizes (or maximizes, if that is the goal) the objective function is called an ''optimal solution''. In mathematics, conventional optimization problems are usually stated in terms of minimization. A ''local minimum'' is defined as an element for which there exists some such that :\forall\mathbf\in A \; \text \;\left\Vert\mathbf-\mathbf^\right\Vert\leq\delta,\, the expression holds; that is to say, on some region around all of the function values are greater than or equal to the value at that element. Local maxima are defined similarly. While a local minimum is at least as good as any nearby elements, a
global minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
is at least as good as every feasible element. Generally, unless the objective function is
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
in a minimization problem, there may be several local minima. In a convex problem, if there is a local minimum that is interior (not on the edge of the set of feasible elements), it is also the global minimum, but a nonconvex problem may have more than one local minimum not all of which need be global minima. A large number of algorithms proposed for solving the nonconvex problems – including the majority of commercially available solvers – are not capable of making a distinction between locally optimal solutions and globally optimal solutions, and will treat the former as actual solutions to the original problem. Global optimization is the branch of
applied mathematics Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathemati ...
and
numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods ...
that is concerned with the development of deterministic algorithms that are capable of guaranteeing convergence in finite time to the actual optimal solution of a nonconvex problem.


Notation

Optimization problems are often expressed with special notation. Here are some examples:


Minimum and maximum value of a function

Consider the following notation: :\min_\; \left(x^2 + 1\right) This denotes the minimum
value Value or values may refer to: Ethics and social * Value (ethics) wherein said concept may be construed as treating actions themselves as abstract objects, associating value to them ** Values (Western philosophy) expands the notion of value beyo ...
of the objective function , when choosing from the set of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s . The minimum value in this case is 1, occurring at . Similarly, the notation :\max_\; 2x asks for the maximum value of the objective function , where may be any real number. In this case, there is no such maximum as the objective function is unbounded, so the answer is " infinity" or "undefined".


Optimal input arguments

Consider the following notation: :\underset \; x^2 + 1, or equivalently :\underset \; x^2 + 1, \; \text \; x\in(-\infty,-1]. This represents the value (or values) of the Argument of a function, argument in the interval that minimizes (or minimize) the objective function (the actual minimum value of that function is not what the problem asks for). In this case, the answer is , since is infeasible, that is, it does not belong to the feasible set. Similarly, :\underset \; x\cos y, or equivalently :\underset \; x\cos y, \; \text \; x\in 5,5 \; y\in\mathbb R, represents the pair (or pairs) that maximizes (or maximize) the value of the objective function , with the added constraint that lie in the interval (again, the actual maximum value of the expression does not matter). In this case, the solutions are the pairs of the form and , where ranges over all
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s. Operators and are sometimes also written as and , and stand for ''argument of the minimum'' and ''argument of the maximum''.


History

Fermat Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is ...
and Lagrange found calculus-based formulae for identifying optima, while Newton and
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
proposed iterative methods for moving towards an optimum. The term "
linear programming Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is ...
" for certain optimization cases was due to George B. Dantzig, although much of the theory had been introduced by
Leonid Kantorovich Leonid Vitalyevich Kantorovich ( rus, Леони́д Вита́льевич Канторо́вич, , p=lʲɪɐˈnʲit vʲɪˈtalʲjɪvʲɪtɕ kəntɐˈrovʲɪtɕ, a=Ru-Leonid_Vitaliyevich_Kantorovich.ogg; 19 January 19127 April 1986) was a Sovie ...
in 1939. (''Programming'' in this context does not refer to
computer programming Computer programming is the process of performing a particular computation (or more generally, accomplishing a specific computing result), usually by designing and building an executable computer program. Programming involves tasks such as anal ...
, but comes from the use of ''program'' by the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territori ...
military to refer to proposed training and
logistics Logistics is generally the detailed organization and implementation of a complex operation. In a general business sense, logistics manages the flow of goods between the point of origin and the point of consumption to meet the requirements of ...
schedules, which were the problems Dantzig studied at that time.) Dantzig published the
Simplex algorithm In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
in 1947, and
John von Neumann John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cove ...
developed the theory of duality in the same year. Other notable researchers in mathematical optimization include the following: * Richard Bellman *
Dimitri Bertsekas Dimitri Panteli Bertsekas (born 1942, Athens, el, Δημήτρης Παντελής Μπερτσεκάς) is an applied mathematician, electrical engineer, and computer scientist, a McAfee Professor at the Department of Electrical Engineering ...
* Michel Bierlaire * Roger Fletcher * Ronald A. Howard * Fritz John * Narendra Karmarkar *
William Karush William Karush (1 March 1917 – 22 February 1997) was an American professor of mathematics at California State University at Northridge and was a mathematician best known for his contribution to Karush–Kuhn–Tucker conditions. In his master's ...
*
Leonid Khachiyan Leonid Genrikhovich Khachiyan (; russian: Леони́д Ге́нрихович Хачия́н; May 3, 1952April 29, 2005) was a Soviet and American mathematician and computer scientist. He was most famous for his ellipsoid algorithm (1979) for ...
*
Bernard Koopman Bernard Osgood Koopman (January 19, 1900 – August 18, 1981) was a French-born American mathematician, known for his work in ergodic theory, the foundations of probability, statistical theory and operations research. Education and work Af ...
* Harold Kuhn *
László Lovász László Lovász (; born March 9, 1948) is a Hungarian mathematician and professor emeritus at Eötvös Loránd University, best known for his work in combinatorics, for which he was awarded the 2021 Abel Prize jointly with Avi Wigderson. He wa ...
*
Arkadi Nemirovski Arkadi Nemirovski (born March 14, 1947) is a professor at the H. Milton Stewart School of Industrial and Systems Engineering at the Georgia Institute of Technology. He has been a leader in continuous optimization and is best known for his work ...
* Yurii Nesterov * Lev Pontryagin * R. Tyrrell Rockafellar * Naum Z. Shor * Albert Tucker


Major subfields

* Convex programming studies the case when the objective function is
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
(minimization) or
concave Concave or concavity may refer to: Science and technology * Concave lens * Concave mirror Mathematics * Concave function, the negative of a convex function * Concave polygon, a polygon which is not convex * Concave set * The concavity of a ...
(maximization) and the constraint set is
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
. This can be viewed as a particular case of nonlinear programming or as generalization of linear or convex quadratic programming. ** Linear programming (LP), a type of convex programming, studies the case in which the objective function ''f'' is linear and the constraints are specified using only linear equalities and inequalities. Such a constraint set is called a
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
or a
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
if it is bounded. **
Second-order cone programming A second-order cone program (SOCP) is a convex optimization problem of the form :minimize \ f^T x \ :subject to ::\lVert A_i x + b_i \rVert_2 \leq c_i^T x + d_i,\quad i = 1,\dots,m ::Fx = g \ where the problem parameters are f \in \mathbb^n, ...
(SOCP) is a convex program, and includes certain types of quadratic programs. **
Semidefinite programming Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive ...
(SDP) is a subfield of convex optimization where the underlying variables are semidefinite
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
. It is a generalization of linear and convex quadratic programming. ** Conic programming is a general form of convex programming. LP, SOCP and SDP can all be viewed as conic programs with the appropriate type of cone. **
Geometric programming A geometric program (GP) is an optimization problem of the form : \begin \mbox & f_0(x) \\ \mbox & f_i(x) \leq 1, \quad i=1, \ldots, m\\ & g_i(x) = 1, \quad i=1, \ldots, p, \end where f_0,\dots,f_m are posynomials and g_1,\dots,g_p are monomials. I ...
is a technique whereby objective and inequality constraints expressed as posynomials and equality constraints as monomials can be transformed into a convex program. *
Integer programming An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective ...
studies linear programs in which some or all variables are constrained to take on
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
values. This is not convex, and in general much more difficult than regular linear programming. *
Quadratic programming Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constr ...
allows the objective function to have quadratic terms, while the feasible set must be specified with linear equalities and inequalities. For specific forms of the quadratic term, this is a type of convex programming. *
Fractional programming In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often desc ...
studies optimization of ratios of two nonlinear functions. The special class of concave fractional programs can be transformed to a convex optimization problem. * Nonlinear programming studies the general case in which the objective function or the constraints or both contain nonlinear parts. This may or may not be a convex program. In general, whether the program is convex affects the difficulty of solving it. * Stochastic programming studies the case in which some of the constraints or parameters depend on random variables. * Robust optimization is, like stochastic programming, an attempt to capture uncertainty in the data underlying the optimization problem. Robust optimization aims to find solutions that are valid under all possible realizations of the uncertainties defined by an uncertainty set. *
Combinatorial optimization Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combi ...
is concerned with problems where the set of feasible solutions is discrete or can be reduced to a
discrete Discrete may refer to: *Discrete particle or quantum in physics, for example in quantum theory *Discrete device, an electronic component with just one circuit element, either passive or active, other than an integrated circuit *Discrete group, a g ...
one. * Stochastic optimization is used with random (noisy) function measurements or random inputs in the search process. * Infinite-dimensional optimization studies the case when the set of feasible solutions is a subset of an infinite-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
al space, such as a space of functions. *
Heuristics A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, ...
and
metaheuristic In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimizati ...
s make few or no assumptions about the problem being optimized. Usually, heuristics do not guarantee that any optimal solution need be found. On the other hand, heuristics are used to find approximate solutions for many complicated optimization problems. *
Constraint satisfaction In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for th ...
studies the case in which the objective function ''f'' is constant (this is used in
artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech r ...
, particularly in
automated reasoning In computer science, in particular in knowledge representation and reasoning and metalogic, the area of automated reasoning is dedicated to understanding different aspects of reasoning. The study of automated reasoning helps produce computer prog ...
). **
Constraint programming Constraint programming (CP) is a paradigm for solving combinatorial problems that draws on a wide range of techniques from artificial intelligence, computer science, and operations research. In constraint programming, users declaratively state t ...
is a programming paradigm wherein relations between variables are stated in the form of constraints. * Disjunctive programming is used where at least one constraint must be satisfied but not all. It is of particular use in scheduling. * Space mapping is a concept for modeling and optimization of an engineering system to high-fidelity (fine) model accuracy exploiting a suitable physically meaningful coarse or surrogate model. In a number of subfields, the techniques are designed primarily for optimization in dynamic contexts (that is, decision making over time): * Calculus of variations Is concerned with finding the best way to achieve some goal, such as finding a surface whose boundary is a specific curve, but with the least possible area. * Optimal control theory is a generalization of the calculus of variations which introduces control policies. * Dynamic programming is the approach to solve the stochastic optimization problem with stochastic, randomness, and unknown model parameters. It studies the case in which the optimization strategy is based on splitting the problem into smaller subproblems. The equation that describes the relationship between these subproblems is called the
Bellman equation A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time ...
. *
Mathematical programming with equilibrium constraints Mathematical programming with equilibrium constraints (MPEC) is the study of constrained optimization problems where the constraints include variational inequalities or complementarities. MPEC is related to the Stackelberg game. MPEC is used ...
is where the constraints include
variational inequalities In mathematics, a variational inequality is an inequality involving a functional, which has to be solved for all possible values of a given variable, belonging usually to a convex set. The mathematical theory of variational inequalities was initi ...
or complementarities.


Multi-objective optimization

Adding more than one objective to an optimization problem adds complexity. For example, to optimize a structural design, one would desire a design that is both light and rigid. When two objectives conflict, a trade-off must be created. There may be one lightest design, one stiffest design, and an infinite number of designs that are some compromise of weight and rigidity. The set of trade-off designs that improve upon one criterion at the expense of another is known as the Pareto set. The curve created plotting weight against stiffness of the best designs is known as the Pareto frontier. A design is judged to be "Pareto optimal" (equivalently, "Pareto efficient" or in the Pareto set) if it is not dominated by any other design: If it is worse than another design in some respects and no better in any respect, then it is dominated and is not Pareto optimal. The choice among "Pareto optimal" solutions to determine the "favorite solution" is delegated to the decision maker. In other words, defining the problem as multi-objective optimization signals that some information is missing: desirable objectives are given but combinations of them are not rated relative to each other. In some cases, the missing information can be derived by interactive sessions with the decision maker. Multi-objective optimization problems have been generalized further into vector optimization problems where the (partial) ordering is no longer given by the Pareto ordering.


Multi-modal or global optimization

Optimization problems are often multi-modal; that is, they possess multiple good solutions. They could all be globally good (same cost function value) or there could be a mix of globally good and locally good solutions. Obtaining all (or at least some of) the multiple solutions is the goal of a multi-modal optimizer. Classical optimization techniques due to their iterative approach do not perform satisfactorily when they are used to obtain multiple solutions, since it is not guaranteed that different solutions will be obtained even with different starting points in multiple runs of the algorithm. Common approaches to global optimization problems, where multiple local extrema may be present include
evolutionary algorithm In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduct ...
s, Bayesian optimization and
simulated annealing Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. ...
.


Classification of critical points and extrema


Feasibility problem

The '' satisfiability problem'', also called the ''feasibility problem'', is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal. Many optimization algorithms need to start from a feasible point. One way to obtain such a point is to
relax Relax may refer to: Aviation * Roland Z-120 Relax, a German ultralight aircraft design for the 120 kg class Music Albums * ''Relax'' (Blank & Jones album), 2003 * ''Relax'' (Das Racist album), 2011 Songs * "Relax" (song), a 1983 song by Fran ...
the feasibility conditions using a
slack variable In an optimization problem, a slack variable is a variable that is added to an inequality constraint to transform it into an equality. Introducing a slack variable replaces an inequality constraint with an equality constraint and a non-negativity c ...
; with enough slack, any starting point is feasible. Then, minimize that slack variable until the slack is null or negative.


Existence

The extreme value theorem of
Karl Weierstrass Karl Theodor Wilhelm Weierstrass (german: link=no, Weierstraß ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics ...
states that a continuous real-valued function on a compact set attains its maximum and minimum value. More generally, a lower semi-continuous function on a compact set attains its minimum; an upper semi-continuous function on a compact set attains its maximum point or view.


Necessary conditions for optimality

One of Fermat's theorems states that optima of unconstrained problems are found at
stationary point In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" in ...
s, where the first derivative or the gradient of the objective function is zero (see first derivative test). More generally, they may be found at critical points, where the first derivative or gradient of the objective function is zero or is undefined, or on the boundary of the choice set. An equation (or set of equations) stating that the first derivative(s) equal(s) zero at an interior optimum is called a 'first-order condition' or a set of first-order conditions. Optima of equality-constrained problems can be found by the
Lagrange multiplier In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied e ...
method. The optima of problems with equality and/or inequality constraints can be found using the ' Karush–Kuhn–Tucker conditions'.


Sufficient conditions for optimality

While the first derivative test identifies points that might be extrema, this test does not distinguish a point that is a minimum from one that is a maximum or one that is neither. When the objective function is twice differentiable, these cases can be distinguished by checking the second derivative or the matrix of second derivatives (called the
Hessian matrix In mathematics, the Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed ...
) in unconstrained problems, or the matrix of second derivatives of the objective function and the constraints called the bordered Hessian in constrained problems. The conditions that distinguish maxima, or minima, from other stationary points are called 'second-order conditions' (see '
Second derivative test In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information abou ...
'). If a candidate solution satisfies the first-order conditions, then the satisfaction of the second-order conditions as well is sufficient to establish at least local optimality.


Sensitivity and continuity of optima

The envelope theorem describes how the value of an optimal solution changes when an underlying
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
changes. The process of computing this change is called
comparative statics In economics, comparative statics is the comparison of two different economic outcomes, before and after a change in some underlying exogenous parameter. As a type of ''static analysis'' it compares two different equilibrium states, after the ...
. The maximum theorem of
Claude Berge Claude Jacques Berge (5 June 1926 – 30 June 2002) was a French mathematician, recognized as one of the modern founders of combinatorics and graph theory. Biography and professional history Claude Berge's parents were André Berge and Geneviève ...
(1963) describes the continuity of an optimal solution as a function of underlying parameters.


Calculus of optimization

For unconstrained problems with twice-differentiable functions, some critical points can be found by finding the points where the
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
of the objective function is zero (that is, the stationary points). More generally, a zero subgradient certifies that a local minimum has been found for minimization problems with convex functions and other locally Lipschitz functions. Further, critical points can be classified using the
definiteness In linguistics, definiteness is a semantic feature of noun phrases, distinguishing between referents or senses that are identifiable in a given context (definite noun phrases) and those which are not (indefinite noun phrases). The prototypical ...
of the
Hessian matrix In mathematics, the Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed ...
: If the Hessian is ''positive'' definite at a critical point, then the point is a local minimum; if the Hessian matrix is negative definite, then the point is a local maximum; finally, if indefinite, then the point is some kind of saddle point. Constrained problems can often be transformed into unconstrained problems with the help of
Lagrange multiplier In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied e ...
s. Lagrangian relaxation can also provide approximate solutions to difficult constrained problems. When the objective function is a convex function, then any local minimum will also be a global minimum. There exist efficient numerical techniques for minimizing convex functions, such as interior-point methods.


Global convergence

More generally, if the objective function is not a quadratic function, then many optimization methods use other methods to ensure that some subsequence of iterations converges to an optimal solution. The first and still popular method for ensuring convergence relies on
line search In optimization, the line search strategy is one of two basic iterative approaches to find a local minimum \mathbf^* of an objective function f:\mathbb R^n\to\mathbb R. The other approach is trust region. The line search approach first finds a ...
es, which optimize a function along one dimension. A second and increasingly popular method for ensuring convergence uses
trust region In mathematical optimization, a trust region is the subset of the region of the objective function that is approximated using a model function (often a quadratic). If an adequate model of the objective function is found within the trust region, the ...
s. Both line searches and trust regions are used in modern methods of non-differentiable optimization. Usually, a global optimizer is much slower than advanced local optimizers (such as BFGS), so often an efficient global optimizer can be constructed by starting the local optimizer from different starting points.


Computational optimization techniques

To solve problems, researchers may use
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s that terminate in a finite number of steps, or iterative methods that converge to a solution (on some specified class of problems), or
heuristics A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, ...
that may provide approximate solutions to some problems (although their iterates need not converge).


Optimization algorithms

*
Simplex algorithm In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
of
George Dantzig George Bernard Dantzig (; November 8, 1914 – May 13, 2005) was an American mathematical scientist who made contributions to industrial engineering, operations research, computer science, economics, and statistics. Dantzig is known for his ...
, designed for
linear programming Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is ...
* Extensions of the simplex algorithm, designed for
quadratic programming Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constr ...
and for linear-fractional programming * Variants of the simplex algorithm that are especially suited for network optimization *
Combinatorial algorithms The following is a list of well-known algorithms along with one-line descriptions for each. Automated planning Combinatorial algorithms General combinatorial algorithms * Brent's algorithm: finds a cycle in function value iterations using on ...
* Quantum optimization algorithms


Iterative methods

The
iterative methods In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the pre ...
used to solve problems of nonlinear programming differ according to whether they evaluate Hessians, gradients, or only function values. While evaluating Hessians (H) and gradients (G) improves the rate of convergence, for functions for which these quantities exist and vary sufficiently smoothly, such evaluations increase the computational complexity (or computational cost) of each iteration. In some cases, the computational complexity may be excessively high. One major criterion for optimizers is just the number of required function evaluations as this often is already a large computational effort, usually much more effort than within the optimizer itself, which mainly has to operate over the N variables. The derivatives provide detailed information for such optimizers, but are even harder to calculate, e.g. approximating the gradient takes at least N+1 function evaluations. For approximations of the 2nd derivatives (collected in the Hessian matrix), the number of function evaluations is in the order of N². Newton's method requires the 2nd-order derivatives, so for each iteration, the number of function calls is in the order of N², but for a simpler pure gradient optimizer it is only N. However, gradient optimizers need usually more iterations than Newton's algorithm. Which one is best with respect to the number of function calls depends on the problem itself. * Methods that evaluate Hessians (or approximate Hessians, using
finite difference A finite difference is a mathematical expression of the form . If a finite difference is divided by , one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for t ...
s): ** Newton's method **
Sequential quadratic programming Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization. SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable. SQP me ...
: A Newton-based method for small-medium scale ''constrained'' problems. Some versions can handle large-dimensional problems. ** Interior point methods: This is a large class of methods for constrained optimization, some of which use only (sub)gradient information and others of which require the evaluation of Hessians. * Methods that evaluate gradients, or approximate gradients in some way (or even subgradients): ** Coordinate descent methods: Algorithms which update a single coordinate in each iteration ** Conjugate gradient methods: Iterative methods for large problems. (In theory, these methods terminate in a finite number of steps with quadratic objective functions, but this finite termination is not observed in practice on finite–precision computers.) **
Gradient descent In mathematics, gradient descent (also often called steepest descent) is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function. The idea is to take repeated steps in the opposite direction of the ...
(alternatively, "steepest descent" or "steepest ascent"): A (slow) method of historical and theoretical interest, which has had renewed interest for finding approximate solutions of enormous problems. ** Subgradient methods: An iterative method for large locally
Lipschitz functions In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there ...
using generalized gradients. Following Boris T. Polyak, subgradient–projection methods are similar to conjugate–gradient methods. ** Bundle method of descent: An iterative method for small–medium-sized problems with locally Lipschitz functions, particularly for convex minimization problems (similar to conjugate gradient methods). **
Ellipsoid method In mathematical optimization, the ellipsoid method is an iterative method for minimizing convex functions. When specialized to solving feasible linear optimization problems with rational data, the ellipsoid method is an algorithm which find ...
: An iterative method for small problems with quasiconvex objective functions and of great theoretical interest, particularly in establishing the polynomial time complexity of some combinatorial optimization problems. It has similarities with Quasi-Newton methods. ** Conditional gradient method (Frank–Wolfe) for approximate minimization of specially structured problems with linear constraints, especially with traffic networks. For general unconstrained problems, this method reduces to the gradient method, which is regarded as obsolete (for almost all problems). ** Quasi-Newton methods: Iterative methods for medium-large problems (e.g. N<1000). ** Simultaneous perturbation stochastic approximation (SPSA) method for stochastic optimization; uses random (efficient) gradient approximation. * Methods that evaluate only function values: If a problem is continuously differentiable, then gradients can be approximated using finite differences, in which case a gradient-based method can be used. ** Interpolation methods ** Pattern search methods, which have better convergence properties than the Nelder–Mead heuristic (with simplices), which is listed below. ** Mirror descent


Heuristics

Besides (finitely terminating)
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s and (convergent) iterative methods, there are
heuristics A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, ...
. A heuristic is any algorithm which is not guaranteed (mathematically) to find the solution, but which is nevertheless useful in certain practical situations. List of some well-known heuristics: * Differential evolution *
Dynamic relaxation Dynamic relaxation is a numerical method, which, among other things, can be used to do " form-finding" for cable and fabric structures. The aim is to find a geometry where all forces are in equilibrium. In the past this was done by direct modellin ...
*
Evolutionary algorithms In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduct ...
*
Genetic algorithms In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to gene ...
*
Hill climbing numerical analysis, hill climbing is a mathematical optimization technique which belongs to the family of local search. It is an iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solutio ...
with random restart * Memetic algorithm * Nelder–Mead simplicial heuristic: A popular heuristic for approximate minimization (without calling gradients) * Particle swarm optimization *
Simulated annealing Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. ...
*
Stochastic tunneling In numerical analysis, stochastic tunneling (STUN) is an approach to global optimization based on the Monte Carlo method- sampling of the function to be objective minimized in which the function is nonlinearly transformed to allow for easier tunne ...
*
Tabu search Tabu search is a metaheuristic search method employing local search methods used for mathematical optimization. It was created by Fred W. Glover in 1986 and formalized in 1989. Local (neighborhood) searches take a potential solution to a pro ...


Applications


Mechanics

Problems in
rigid body dynamics In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are ''rigid'' (i.e. they do not deform under the action of ...
(in particular articulated rigid body dynamics) often require mathematical programming techniques, since you can view rigid body dynamics as attempting to solve an
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
on a constraint manifold; the constraints are various nonlinear geometric constraints such as "these two points must always coincide", "this surface must not penetrate any other", or "this point must always lie somewhere on this curve". Also, the problem of computing contact forces can be done by solving a
linear complementarity problem In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968. ...
, which can also be viewed as a QP (quadratic programming) problem. Many design problems can also be expressed as optimization programs. This application is called design optimization. One subset is the engineering optimization, and another recent and growing subset of this field is multidisciplinary design optimization, which, while useful in many problems, has in particular been applied to aerospace engineering problems. This approach may be applied in cosmology and astrophysics.


Economics and finance

Economics Economics () is the social science that studies the production, distribution, and consumption of goods and services. Economics focuses on the behaviour and interactions of economic agents and how economies work. Microeconomics analyzes ...
is closely enough linked to optimization of agents that an influential definition relatedly describes economics ''qua'' science as the "study of human behavior as a relationship between ends and scarce means" with alternative uses. Modern optimization theory includes traditional optimization theory but also overlaps with game theory and the study of economic equilibria. The ''
Journal of Economic Literature The ''Journal of Economic Literature'' is a peer-reviewed academic journal, published by the American Economic Association, that surveys the academic literature in economics. It was established in 1963 as the ''Journal of Economic Abstracts'',
''
codes In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form, sometimes shortened or secret, for communication through a communication ...
classify mathematical programming, optimization techniques, and related topics under JEL:C61-C63. In microeconomics, the utility maximization problem and its
dual problem In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then t ...
, the
expenditure minimization problem In microeconomics, the expenditure minimization problem is the dual of the utility maximization problem: "how much money do I need to reach a certain level of happiness?". This question comes in two parts. Given a consumer's utility function, pr ...
, are economic optimization problems. Insofar as they behave consistently,
consumer A consumer is a person or a group who intends to order, or uses purchased goods, products, or services primarily for personal, social, family, household and similar needs, who is not directly related to entrepreneurial or business activities. ...
s are assumed to maximize their
utility As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosoph ...
, while firms are usually assumed to maximize their profit. Also, agents are often modeled as being risk-averse, thereby preferring to avoid risk.
Asset prices In finance, valuation is the process of determining the present value (PV) of an asset. In a business context, it is often the hypothetical price that a third party would pay for a given asset. Valuations can be done on assets (for example, inve ...
are also modeled using optimization theory, though the underlying mathematics relies on optimizing stochastic processes rather than on static optimization. International trade theory also uses optimization to explain trade patterns between nations. The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using
control theory Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a ...
. For example, dynamic search models are used to study labor-market behavior. A crucial distinction is between deterministic and stochastic models. Macroeconomists build dynamic stochastic general equilibrium (DSGE) models that describe the dynamics of the whole economy as the result of the interdependent optimizing decisions of workers, consumers, investors, and governments.


Electrical engineering

Some common applications of optimization techniques in electrical engineering include active filter design, stray field reduction in superconducting magnetic energy storage systems, space mapping design of
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
structures, handset antennas, electromagnetics-based design. Electromagnetically validated design optimization of microwave components and antennas has made extensive use of an appropriate physics-based or empirical surrogate model and space mapping methodologies since the discovery of space mapping in 1993.


Civil engineering

Optimization has been widely used in civil engineering. Construction management and
transportation engineering Transportation engineering or transport engineering is the application of technology and scientific principles to the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for t ...
are among the main branches of civil engineering that heavily rely on optimization. The most common civil engineering problems that are solved by optimization are cut and fill of roads, life-cycle analysis of structures and infrastructures, resource leveling, water resource allocation,
traffic Traffic comprises pedestrians, vehicles, ridden or herded animals, trains, and other conveyances that use public ways (roads) for travel and transportation. Traffic laws govern and regulate traffic, while rules of the road include traffi ...
management and schedule optimization.


Operations research

Another field that uses optimization techniques extensively is
operations research Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decis ...
. Operations research also uses stochastic modeling and simulation to support improved decision-making. Increasingly, operations research uses stochastic programming to model dynamic decisions that adapt to events; such problems can be solved with large-scale optimization and stochastic optimization methods.


Control engineering

Mathematical optimization is used in much modern controller design. High-level controllers such as
model predictive control Model predictive control (MPC) is an advanced method of process control that is used to control a process while satisfying a set of constraints. It has been in use in the process industries in chemical plants and oil refineries since the 1980s. In ...
(MPC) or real-time optimization (RTO) employ mathematical optimization. These algorithms run online and repeatedly determine values for decision variables, such as choke openings in a process plant, by iteratively solving a mathematical optimization problem including constraints and a model of the system to be controlled.


Geophysics

Optimization techniques are regularly used in
geophysical Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' some ...
parameter estimation problems. Given a set of geophysical measurements, e.g. seismic recordings, it is common to solve for the physical properties and geometrical shapes of the underlying rocks and fluids. The majority of problems in geophysics are nonlinear with both deterministic and stochastic methods being widely used.


Molecular modeling

Nonlinear optimization methods are widely used in conformational analysis.


Computational systems biology

Optimization techniques are used in many facets of computational systems biology such as model building, optimal experimental design, metabolic engineering, and synthetic biology. Linear programming has been applied to calculate the maximal possible yields of fermentation products, and to infer gene regulatory networks from multiple microarray datasets as well as transcriptional regulatory networks from high-throughput data. Nonlinear programming has been used to analyze energy metabolism and has been applied to metabolic engineering and parameter estimation in biochemical pathways.


Machine learning


Solvers


See also

*
Brachistochrone In physics and mathematics, a brachistochrone curve (), or curve of fastest descent, is the one lying on the plane between a point ''A'' and a lower point ''B'', where ''B'' is not directly below ''A'', on which a bead slides frictionlessly under ...
*
Curve fitting Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data i ...
* Deterministic global optimization * Goal programming * Important publications in optimization * Least squares *
Mathematical Optimization Society The Mathematical Optimization Society (MOS), known as the Mathematical Programming Society until 2010,Mathematical optimization algorithms *
Mathematical optimization software Given a transformation between input and output values, described by a mathematical function ''f'', optimization deals with generating and selecting a best solution from some set of available alternatives, by systematically choosing input values f ...
* Process optimization *
Simulation-based optimization Simulation-based optimization (also known as simply simulation optimization) integrates optimization techniques into simulation modeling and analysis. Because of the complexity of the simulation, the objective function may become difficult and expe ...
*
Test functions for optimization In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as: * Convergence rate. * Precision. * Robustness. * General performance. Here some test functions are ...
*
Variational calculus The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
*
Vehicle routing problem The vehicle routing problem (VRP) is a combinatorial optimization and integer programming problem which asks "What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?" It generalises ...


Notes


Further reading

* * * * *


External links

* Links to optimization source codes * * * {{Authority control Operations research
Optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...