HOME

TheInfoList



OR:

Open-shop scheduling or open-shop scheduling problem (OSSP) is an
optimization problem In mathematics, computer science and economics, an optimization problem is the problem of finding the ''best'' solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables ...
in
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
and
operations research Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decis ...
. It is a variant of
optimal job scheduling Optimal job scheduling is a class of optimization problems related to scheduling. The inputs to such problems are a list of '' jobs'' (also called ''processes'' or ''tasks'') and a list of ''machines'' (also called ''processors'' or ''workers''). Th ...
. In a general job-scheduling problem, we are given ''n'' jobs ''J''1, ''J''2, ..., ''Jn'' of varying processing times, which need to be scheduled on ''m'' machines with varying processing power, while trying to minimize the
makespan In operations research, the makespan of a project is the length of time that elapses from the start of work to the end. This type of multi-mode resource constrained project scheduling problem (MRCPSP) seeks to create the shortest logical project s ...
- the total length of the schedule (that is, when all the jobs have finished processing). In the specific variant known as ''open-shop scheduling'', each job consists of a set of ''operations'' ''O''1, ''O''2, ..., ''On'' which need to be processed in an ''arbitrary'' order. The problem was first studied by Teofilo F. Gonzalez and
Sartaj Sahni Professor Sartaj Kumar Sahni (born July 22, 1949, in Pune, India) is a computer scientist based in the United States, and is one of the pioneers in the field of data structures. He is a distinguished professor in the Department of Computer and I ...
in 1976. In the standard three-field notation for optimal job-scheduling problems, the open-shop variant is denoted by O in the first field. For example, the problem denoted by "O3, p_, C_\max" is a 3-machines job-shop problem with unit processing times, where the goal is to minimize the maximum completion time.


Definition

The input to the open-shop scheduling problem consists of a set of ''n'' jobs, another set of ''m'' workstations, and a two-dimensional table of the amount of time each job should spend at each workstation (possibly zero). Each job may be processed only at one workstation at a time, and each workstation can process only one job at a time. However, unlike the job-shop problem, the order in which the processing steps happen can vary freely. The goal is to assign a time for each job to be processed by each workstation, so that no two jobs are assigned to the same workstation at the same time, no job is assigned to two workstations at the same time, and every job is assigned to each workstation for the desired amount of time. The usual measure of quality of a solution is its
makespan In operations research, the makespan of a project is the length of time that elapses from the start of work to the end. This type of multi-mode resource constrained project scheduling problem (MRCPSP) seeks to create the shortest logical project s ...
, the amount of time from the start of the schedule (the first assignment of a job to a workstation) to its end (the finishing time of the last job at the last workstation).


Computational complexity

The open-shop scheduling problem can be solved in
polynomial time In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by ...
for instances that have only two workstations or only two jobs. It may also be solved in polynomial time when all nonzero processing times are equal: in this case the problem becomes equivalent to
edge coloring In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blu ...
a
bipartite graph In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V a ...
that has the jobs and workstations as its vertices, and that has an edge for every job-workstation pair that has a nonzero processing time. The color of an edge in the coloring corresponds to the segment of time at which a job-workstation pair is scheduled to be processed. Because the
line graph In the mathematical discipline of graph theory, the line graph of an undirected graph is another graph that represents the adjacencies between edges of . is constructed in the following way: for each edge in , make a vertex in ; for every ...
s of
bipartite graph In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V a ...
s are
perfect graph In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the order of the largest clique of that subgraph (clique number). Equivalently stated in symbolic terms an arbitrary graph G=(V,E) is perfe ...
s, bipartite graphs may be edge-colored in polynomial time. For three or more workstations, or three or more jobs, with varying processing times, open-shop scheduling is
NP-hard In computational complexity theory, NP-hardness ( non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard pr ...
.


Related problems

* ''
Job-shop scheduling Job-shop scheduling, the job-shop problem (JSP) or job-shop scheduling problem (JSSP) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling. In a general job scheduling problem, we are gi ...
'' is a similar problem but with a yet additional constraint the operations must be done in a specific order. * ''
Flow-shop scheduling Flow-shop scheduling is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling. In a general job-scheduling problem, we are given ''n'' jobs ''J''1, ''J''2, ..., ''Jn'' of va ...
'' is a job-shop scheduling but with an additional ''flow'' constraint each operation must be done on a specific machine.


References

{{Scheduling problems Optimal scheduling