HOME

TheInfoList



OR:

Osmoconformers are
marine organisms Marine life, sea life, or ocean life is the aquatic plant, plants, aquatic animal, animals and other organisms that live in the seawater, salt water of seas or oceans, or the brackish water of coastal estuary, estuaries. At a fundamental leve ...
that maintain an internal environment which is isotonic to their external environment. This means that the osmotic pressure of the organism's cells is equal to the osmotic pressure of their surrounding environment. By minimizing the osmotic gradient, this subsequently minimizes the net
influx Influx may refer to: * Flux (biology) of ions, molecules or other substances from the extracellular space to the intracellular space * ''Influx'', a 2014 science-fiction novel by Daniel Suarez Daniel is a masculine given name and a surname of ...
and efflux of water into and out of cells. Even though osmoconformers have an internal environment that is isosmotic to their external environment, the types of
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
in the two environments differ greatly in order to allow critical biological functions to occur. An advantage of osmoconformation is that such organisms don’t need to expend as much energy as osmoregulators in order to regulate ion gradients. However, to ensure that the correct types of ions are in the desired location, a small amount of energy is expended on ion transport. A disadvantage to osmoconformation is that the organisms are subject to changes in the
osmolarity Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution (osmol/L or Osm/L). The osmolarity of a solution is usually expressed as Osm/L ...
of their environment.


Examples


Invertebrates

Most osmoconformers are
marine invertebrates Marine invertebrates are the invertebrates that live in marine habitats. Invertebrate is a blanket term that includes all animals apart from the vertebrate members of the chordate phylum. Invertebrates lack a vertebral column, and some have ev ...
such as echinoderms (such as starfish),
mussels Mussel () is the common name used for members of several families of bivalve molluscs, from saltwater and freshwater habitats. These groups have in common a shell whose outline is elongated and asymmetrical compared with other edible clams, which ...
, marine crabs,
lobsters Lobsters are a family (Nephropidae, synonym Homaridae) of marine crustaceans. They have long bodies with muscular tails and live in crevices or burrows on the sea floor. Three of their five pairs of legs have claws, including the first pair, ...
,
jellyfish Jellyfish and sea jellies are the informal common names given to the medusa-phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria. Jellyfish are mainly free-swimming marine animals with umbrella- ...
,
ascidians Ascidiacea, commonly known as the ascidians, tunicates (in part), and sea squirts (in part), is a polyphyletic class in the subphylum Tunicata of sac-like marine invertebrate filter feeders. Ascidians are characterized by a tough outer "tunic" ...
( sea squirts - primitive chordates), and
scallops Scallop () is a common name that encompasses various species of Marine (ocean), marine bivalve mollusc, mollusks in the Taxonomy (biology), taxonomic Family (biology), family Pectinidae, the scallops. However, the common name "scallop" is also s ...
. Some
insects Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body (head, thorax and abdomen), three pairs of j ...
are also osmoconformers. Some osmoconformers, such as echinoderms, are stenohaline, which means they can only survive in a limited range of external osmolarities. The survival of such organisms is thus contingent on their external osmotic environment remaining relatively constant. On the other hand, some osmoconformers are classified as
euryhaline Euryhaline organisms are able to adapt to a wide range of salinities. An example of a euryhaline fish is the molly (''Poecilia sphenops'') which can live in fresh water, brackish water, or salt water. The green crab (''Carcinus maenas'') is an e ...
, which means they can survive in a broad range of external osmolarities. Mussels are a prime example of a euryhaline osmoconformer. Mussels have adapted to survive in a broad range of external salinities due to their ability to close their shells which allows them to seclude themselves from unfavorable external environments.


Craniates

There are a couple of examples of osmoconformers that are
craniates A craniate is a member of the Craniata (sometimes called the Craniota), a proposed clade of chordate animals with a skull of hard bone or cartilage. Living representatives are the Myxini (hagfishes), Hyperoartia (including lampreys), and the m ...
such as
hagfish Hagfish, of the class Myxini (also known as Hyperotreti) and order Myxiniformes , are eel-shaped, slime-producing marine fish (occasionally called slime eels). They are the only known living animals that have a skull but no vertebral column, a ...
, skates and
sharks Sharks are a group of elasmobranch fish characterized by a cartilaginous skeleton, five to seven gill slits on the sides of the head, and pectoral fins that are not fused to the head. Modern sharks are classified within the clade Selachimorp ...
. Their body fluid is isoosmotic with seawater, but their high osmolarity is maintained by making the concentration of organic solutes unnaturally high. Sharks concentrate urea in their bodies, and since urea denatures proteins at high concentrations, they also accumulate
trimethylamine N-oxide Trimethylamine ''N''-oxide (TMAO) is an organic compound with the formula (CH3)3NO. It is in the class of amine oxides. Although the anhydrous compound is known, trimethylamine ''N''-oxide is usually encountered as the dihydrate. Both the anhydr ...
(TMAO) to counter the effect. Sharks adjust their internal osmolarity according to the osmolarity of the sea water surrounding them. Rather than ingesting sea water in order to change their internal salinity, sharks are able to absorb sea water directly. This is due to the high concentration of urea kept inside their bodies. This high concentration of urea creates a
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
gradient which permits the shark to absorb water in order to equalize the concentration difference. The
crab-eating frog The crab-eating frog (''Fejervarya cancrivora'') is a frog native to south-eastern Asia including Taiwan, China, the Philippines and more rarely as far west as Orissa in India. It has also been introduced to Guam, and was most likely introduced f ...
, or Rana cancrivora, is an example of a vertebrate osmoconformer. The crab-eating frog also regulates its rates of urea retention and excretion, which allows them to survive and maintain their status as osmoconformers in a wide range of external salinities. Hagfish maintain an internal ion composition plasma that differs from that of seawater. The internal ionic environment of hagfish contains a lower concentration of
divalent In chemistry, the valence (US spelling) or valency (British spelling) of an chemical element, element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, ...
ions (Ca2+, Mg2+, SO4 2-) and a slightly higher concentration of
monovalent ion In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, or affinity of a ...
s. Hagfish therefore have to expend some energy for osmoregulation.


Biochemistry

Ion gradients are crucial to many major biological functions on a cellular level. Consequently, the ionic composition of an organism's internal environment is highly regulated with respect to its external environment. Osmoconformers have adapted so that they utilize the ionic composition of their external environment, which is typically seawater, in order to support important biological functions. For instance, seawater has a high concentration of
sodium ion Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable is ...
s, which helps support
muscle contraction Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as ...
and
neuronal A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. No ...
signaling when paired with high internal concentrations of
potassium ion Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosphe ...
s.


References

{{Animalosmo Marine biology Homeostasis