In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, orthogonal coordinates are defined as a set of ''d'' coordinates q = (''q''
1, ''q''
2, ..., ''q''
''d'') in which the
coordinate hypersurfaces all meet at right angles (note: superscripts are
indices, not exponents). A coordinate surface for a particular coordinate ''q''
''k'' is the curve, surface, or hypersurface on which ''q''
''k'' is a constant. For example, the three-dimensional
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
(''x'', ''y'', ''z'') is an orthogonal coordinate system, since its coordinate surfaces ''x'' = constant, ''y'' = constant, and ''z'' = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of
curvilinear coordinates
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inve ...
.
Motivation
While vector operations and physical laws are normally easiest to derive in
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially
boundary value problem
In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to t ...
s, such as those arising in field theories of
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
,
fluid flow
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
,
electrodynamics
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
,
plasma
Plasma or plasm may refer to:
Science
* Plasma (physics), one of the four fundamental states of matter
* Plasma (mineral), a green translucent silica mineral
* Quark–gluon plasma, a state of matter in quantum chromodynamics
Biology
* Blood pla ...
physics and the
diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
of
chemical species
A chemical species is a chemical substance or ensemble composed of chemically identical molecular entity, molecular entities that can explore the same set of molecular energy levels on a characteristic or delineated time scale. These energy levels ...
or
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
.
The chief advantage of non-Cartesian coordinates is that they can be chosen to match the symmetry of the problem. For example, the pressure wave due to an explosion far from the ground (or other barriers) depends on 3D space in Cartesian coordinates, however the pressure predominantly moves away from the center, so that in
spherical coordinates
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the ''radial distance'' of that point from a fixed origin, its ''polar angle'' measu ...
the problem becomes very nearly one-dimensional (since the pressure wave dominantly depends only on time and the distance from the center). Another example is (slow) fluid in a straight circular pipe: in Cartesian coordinates, one has to solve a (difficult) two dimensional boundary value problem involving a partial differential equation, but in
cylindrical coordinates
A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis ''(axis L in the image opposite)'', the direction from the axis relative to a chosen reference di ...
the problem becomes one-dimensional with an
ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast w ...
instead of a
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function.
The function is often thought of as an "unknown" to be sol ...
.
The reason to prefer orthogonal coordinates instead of general
curvilinear coordinates
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inve ...
is simplicity: many complications arise when coordinates are not orthogonal. For example, in orthogonal coordinates many problems may be solved by
separation of variables
In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs ...
. Separation of variables is a mathematical technique that converts a complex ''d''-dimensional problem into ''d'' one-dimensional problems that can be solved in terms of known functions. Many equations can be reduced to
Laplace's equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
\nabla^2\! f = 0 or \Delta f = 0,
where \Delta = \nab ...
or the
Helmholtz equation
In mathematics, the eigenvalue problem for the Laplace operator is known as the Helmholtz equation. It corresponds to the linear partial differential equation
\nabla^2 f = -k^2 f,
where is the Laplace operator (or "Laplacian"), is the eigenv ...
.
Laplace's equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
\nabla^2\! f = 0 or \Delta f = 0,
where \Delta = \nab ...
is separable in 13 orthogonal coordinate systems (the 14 listed
in the table below with the exception of
toroidal), and the
Helmholtz equation
In mathematics, the eigenvalue problem for the Laplace operator is known as the Helmholtz equation. It corresponds to the linear partial differential equation
\nabla^2 f = -k^2 f,
where is the Laplace operator (or "Laplacian"), is the eigenv ...
is separable in 11 orthogonal coordinate systems.
Orthogonal coordinates never have off-diagonal terms in their
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
. In other words, the infinitesimal squared distance ''ds''
2 can always be written as a scaled sum of the squared infinitesimal coordinate displacements
:
where ''d'' is the dimension and the scaling functions (or scale factors)
:
equal the square roots of the diagonal components of the metric tensor, or the lengths of the local basis vectors
described below. These scaling functions ''h''
''i'' are used to calculate differential operators in the new coordinates, e.g., the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
, the
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
, the
divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the ...
and the
curl
cURL (pronounced like "curl", UK: , US: ) is a computer software project providing a library (libcurl) and command-line tool (curl) for transferring data using various network protocols. The name stands for "Client URL".
History
cURL was fi ...
.
A simple method for generating orthogonal coordinates systems in two dimensions is by a
conformal mapping
In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.
More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in ...
of a standard two-dimensional grid of
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
. A
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
''z'' = ''x'' + ''iy'' can be formed from the real coordinates ''x'' and ''y'', where ''i'' represents the
imaginary unit
The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
. Any
holomorphic function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
''w'' = ''f''(''z'') with non-zero complex derivative will produce a
conformal mapping
In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.
More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in ...
; if the resulting complex number is written , then the curves of constant ''u'' and ''v'' intersect at right angles, just as the original lines of constant ''x'' and ''y'' did.
Orthogonal coordinates in three and higher dimensions can be generated from an orthogonal two-dimensional coordinate system, either by projecting it into a new dimension (''cylindrical coordinates'') or by rotating the two-dimensional system about one of its symmetry axes. However, there are other orthogonal coordinate systems in three dimensions that cannot be obtained by projecting or rotating a two-dimensional system, such as the
ellipsoidal coordinates
Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system (\lambda, \mu, \nu) that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic ...
. More general orthogonal coordinates may be obtained by starting with some necessary coordinate surfaces and considering their
orthogonal trajectories
In mathematics an orthogonal trajectory is a curve, which intersects any curve of a given pencil of (planar) curves ''orthogonally''.
For example, the orthogonal trajectories of a pencil of ''concentric circles'' are the lines through their commo ...
.
Basis vectors
Covariant basis
In
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
, the
basis vectors
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as componen ...
are fixed (constant). In the more general setting of
curvilinear coordinates
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inve ...
, a point in space is specified by the coordinates, and at every such point there is bound a set of basis vectors, which generally are not constant: this is the essence of curvilinear coordinates in general and is a very important concept. What distinguishes orthogonal coordinates is that, though the basis vectors vary, they are always
orthogonal
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''.
By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
with respect to each other. In other words,
:
These basis vectors are by definition the
tangent vector
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are eleme ...
s of the curves obtained by varying one coordinate, keeping the others fixed:
:
where r is some point and ''q''
''i'' is the coordinate for which the basis vector is extracted. In other words, a curve is obtained by fixing all but one coordinate; the unfixed coordinate is varied as in a
parametric curve
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric obj ...
, and the derivative of the curve with respect to the parameter (the varying coordinate) is the basis vector for that coordinate.
Note that the vectors are not necessarily of equal length. The useful functions known as scale factors of the coordinates are simply the lengths
of the basis vectors
(see table below). The scale factors are sometimes called
Lamé coefficients
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inv ...
, not to be confused with
Lamé parameters (solid mechanics).
The
normalized basis vectors are notated with a hat and obtained by dividing by the length:
:
A
vector field may be specified by its components with respect to the basis vectors or the normalized basis vectors, and one must be sure which case is meant. Components in the normalized basis are most common in applications for clarity of the quantities (for example, one may want to deal with tangential velocity instead of tangential velocity times a scale factor); in derivations the normalized basis is less common since it is more complicated.
Contravariant basis
The basis vectors shown above are
covariant basis vectors (because they "co-vary" with vectors). In the case of orthogonal coordinates, the contravariant basis vectors are easy to find since they will be in the same direction as the covariant vectors but
reciprocal length Reciprocal length or inverse length is a quantity or measurement used in several branches of science and mathematics. As the reciprocal of length, common units used for this measurement include the reciprocal metre or inverse metre (symbol: m− ...
(for this reason, the two sets of basis vectors are said to be reciprocal with respect to each other):
:
this follows from the fact that, by definition,
, using the
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 &\ ...
. Note that:
:
We now face three different basis sets commonly used to describe vectors in orthogonal coordinates: the covariant basis e
''i'', the contravariant basis e
''i'', and the normalized basis ê
''i''. While a vector is an ''objective quantity'', meaning its identity is independent of any coordinate system, the components of a vector depend on what basis the vector is represented in.
To avoid confusion, the components of the vector x with respect to the e
''i'' basis are represented as x
''i'', while the components with respect to the e
''i'' basis are represented as x
''i'':
:
The position of the indices represent how the components are calculated (upper indices should not be confused with
exponentiation
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to re ...
). Note that the
summation
In mathematics, summation is the addition of a sequence of any kind of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, mat ...
symbols Σ (capital
Sigma
Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as ...
) and the summation range, indicating summation over all basis vectors (''i'' = 1, 2, ..., ''d''), are often
omitted. The components are related simply by:
:
There is no distinguishing widespread notation in use for vector components with respect to the normalized basis; in this article we'll use subscripts for vector components and note that the components are calculated in the normalized basis.
Vector algebra
Vector addition and negation are done component-wise just as in Cartesian coordinates with no complication. Extra considerations may be necessary for other vector operations.
Note however, that all of these operations assume that two vectors in a
vector field are bound to the same point (in other words, the tails of vectors coincide). Since basis vectors generally vary in orthogonal coordinates, if two vectors are added whose components are calculated at different points in space, the different basis vectors require consideration.
Dot product
The
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algebra ...
in
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
(
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
with an
orthonormal
In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of un ...
basis set) is simply the sum of the products of components. In orthogonal coordinates, the dot product of two vectors x and y takes this familiar form when the components of the vectors are calculated in the normalized basis:
:
This is an immediate consequence of the fact that the normalized basis at some point can form a Cartesian coordinate system: the basis set is
orthonormal
In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of un ...
.
For components in the covariant or contravariant bases,
:
This can be readily derived by writing out the vectors in component form, normalizing the basis vectors, and taking the dot product. For example, in 2D:
:
where the fact that the normalized covariant and contravariant bases are equal has been used.
Cross product
The
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is ...
in 3D Cartesian coordinates is:
:
The above formula then remains valid in orthogonal coordinates if the components are calculated in the normalized basis.
To construct the cross product in orthogonal coordinates with covariant or contravariant bases we again must simply normalize the basis vectors, for example:
:
which, written expanded out,
:
Terse notation for the cross product, which simplifies generalization to non-orthogonal coordinates and higher dimensions, is possible with the
Levi-Civita tensor
In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers , for s ...
, which will have components other than zeros and ones if the scale factors are not all equal to one.
Vector calculus
Differentiation
Looking at an infinitesimal displacement from some point, it's apparent that
:
By
definition
A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitio ...
, the gradient of a function must satisfy (this definition remains true if ''ƒ'' is any
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
)
:
It follows then that
del operator
Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes t ...
must be:
:
and this happens to remain true in general curvilinear coordinates. Quantities like the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
and
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
follow through proper application of this operator.
Basis vector formulae
From dr and normalized basis vectors ê
''i'', the following can be constructed.
where
:
is the
Jacobian determinant
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables ...
, which has the geometric interpretation of the deformation in volume from the infinitesimal cube d''x''d''y''d''z'' to the infinitesimal curved volume in the orthogonal coordinates.
Integration
Using the line element shown above, the
line integral
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integral'' is used as well, alt ...
along a path
of a vector F is:
:
An infinitesimal element of area for a surface described by holding one coordinate ''q
k'' constant is:
:
Similarly, the volume element is:
:
where the large symbol Π (capital
Pi) indicates a
product
Product may refer to:
Business
* Product (business), an item that serves as a solution to a specific consumer problem.
* Product (project management), a deliverable or set of deliverables that contribute to a business solution
Mathematics
* Produ ...
the same way that a large Σ indicates summation. Note that the product of all the scale factors is the
Jacobian determinant
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables ...
.
As an example, the
surface integral
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, one may ...
of a vector function F over a ''q''
1 = ''constant'' surface
in 3D is:
:
Note that F
1/''h''
1 is the component of F normal to the surface.
Differential operators in three dimensions
Since these operations are common in application, all vector components in this section are presented with respect to the normalised basis:
.
The above expressions can be written in a more compact form using the
Levi-Civita symbol
In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers , for some ...
and the Jacobian determinant
, assuming summation over repeated indices:
Also notice the gradient of a scalar field can be expressed in terms of the
Jacobian matrix
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as ...
J containing canonical partial derivatives:
: